Department of Specialties Medical, School of Medicine, Universidad de Monterrey.
Department of Intern Medicine, Hospital Christus Muguerza Alta Especialidad.
Arch Cardiol Mex. 2022;92(4):492-501. doi: 10.24875/ACM.21000304.
To explore the diagnostic utility of 31 electrocardiogram (ECG) criteria for detecting echocardiographic (Echo) left ventricular geometry using accuracy.
This cross-sectional study included consecutive adults (> 18 years) that were classified by Echo left ventricular geometry as normal (NL), concentric remodeling (CR), concentric hypertrophy (CH), and eccentric hypertrophy (EH). Thirty-one state-of-the-art ECG criteria for Echo left ventricular hypertrophy were calculated. AUC 95%CI, accuracy, sensitivity, specificity, and positive and negative predictive value for detecting Echo left ventricular geometries were compared. Multivariable linear regression models were produced using the ECG criteria as the dependent variable.
A total of 672 adults were included in the study. From 31 ECG criteria, Cornell (ECG21, SV3 + RaVL) and modified Cornell (ECG 31, RaVL + deepest S in all leads) criteria have the best overall AUC in differentiating NL versus CH (0.666 and 0.646), NL versus EH (0.686 and 0.656), CR versus CH (0.687 and 0.661), and CR versus EH (0.718 and 0.676). In multivariable linear regression models, CH and EH had the strongest effect on the final voltage in Cor- nell (ECG21) and modified Cornell (ECG31).
From 31 state-of-the-art criteria, Cornell and modified Cornell criteria have the best AUC and accuracy for predicting most left ventricular geometries. CH and EH had the strongest effect on the voltage of Cornell and modified Cornell criteria compared to body mass index, age, diabetes, hypertension, and chronic heart disease. The ECG criteria poorly differentiate NL from CR and CH from EH.
利用准确性探讨 31 项心电图(ECG)标准在检测超声心动图(Echo)左心室几何结构中的诊断效用。
本横断面研究纳入了经 Echo 左心室几何结构分类为正常(NL)、同心重构(CR)、同心肥厚(CH)和偏心肥厚(EH)的连续成年患者(>18 岁)。计算了 31 项先进的 Echo 左心室肥厚心电图标准。比较了用于检测 Echo 左心室几何结构的 AUC 95%CI、准确性、敏感性、特异性、阳性和阴性预测值。使用 ECG 标准作为因变量生成多变量线性回归模型。
共有 672 名成年人纳入研究。在 31 项 ECG 标准中,Cornell(ECG21,SV3+RaVL)和改良 Cornell(ECG31,所有导联 RaVL+最深 S)标准在区分 NL 与 CH(0.666 和 0.646)、NL 与 EH(0.686 和 0.656)、CR 与 CH(0.687 和 0.661)以及 CR 与 EH(0.718 和 0.676)方面具有最佳的总体 AUC。在多变量线性回归模型中,CH 和 EH 对 Cornell(ECG21)和改良 Cornell(ECG31)标准的最终电压有最强的影响。
在 31 项先进标准中,Cornell 和改良 Cornell 标准具有预测大多数左心室几何结构的最佳 AUC 和准确性。与体重指数、年龄、糖尿病、高血压和慢性心脏病相比,CH 和 EH 对 Cornell 和改良 Cornell 标准的电压影响最大。ECG 标准难以区分 NL 与 CR,CH 与 EH。