Suppr超能文献

黑色素瘤患者对免疫检查点抑制剂反应的基因组和转录组预测指标:一种机器学习方法

Genomic and Transcriptomic Predictors of Response to Immune Checkpoint Inhibitors in Melanoma Patients: A Machine Learning Approach.

作者信息

Ahmed Yaman B, Al-Bzour Ayah N, Ababneh Obada E, Abushukair Hassan M, Saeed Anwaar

机构信息

Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan.

Department of Medicine, Division of Medical Oncology, Kansas University Cancer Center, Kansas City, KS 66205, USA.

出版信息

Cancers (Basel). 2022 Nov 15;14(22):5605. doi: 10.3390/cancers14225605.

Abstract

Immune checkpoint inhibitors (ICIs) became one of the most revolutionary cancer treatments, especially in melanoma. While they have been proven to prolong survival with lesser side effects compared to chemotherapy, the accurate prediction of response remains to be an unmet gap. Thus, we aim to identify accurate clinical and transcriptomic biomarkers for ICI response in melanoma. We also provide mechanistic insight into how high-performing markers impose their effect on the tumor microenvironment (TME). Clinical and transcriptomic data were retrieved from melanoma studies administering ICIs from cBioportal and GEO databases. Four machine learning models were developed using random-forest classification (RFC) entailing clinical and genomic features (RFC7), differentially expressed genes (DEGs, RFC-Seq), survival-related DEGs (RFC-Surv) and a combination model. The xCELL algorithm was used to investigate the TME. A total of 212 ICI-treated melanoma patients were identified. All models achieved a high area under the curve (AUC) and bootstrap estimate (RFC7: 0.71, 0.74; RFC-Seq: 0.87, 0.75; RFC-Surv: 0.76, 0.76, respectively). Tumor mutation burden, GSTA3, and VNN2 were the highest contributing features. Tumor infiltration analyses revealed a direct correlation between upregulated genes and CD8+, CD4+ T cells, and B cells and inversely correlated with myeloid-derived suppressor cells. Our findings confirmed the accuracy of several genomic, clinical, and transcriptomic-based RFC models, that could further support the use of TMB in predicting response to ICIs. Novel genes (GSTA3 and VNN2) were identified through RFC-seq and RFC-surv models that could serve as genomic biomarkers after robust validation.

摘要

免疫检查点抑制剂(ICI)成为了最具革命性的癌症治疗方法之一,尤其是在黑色素瘤治疗方面。虽然与化疗相比,它们已被证明能延长生存期且副作用较小,但对反应的准确预测仍是一个尚未填补的空白。因此,我们旨在识别黑色素瘤中ICI反应的准确临床和转录组学生物标志物。我们还深入探讨了高性能标志物如何对肿瘤微环境(TME)产生影响。从cBioportal和GEO数据库中检索了使用ICI的黑色素瘤研究的临床和转录组学数据。使用随机森林分类(RFC)开发了四种机器学习模型,分别涉及临床和基因组特征(RFC7)、差异表达基因(DEG,RFC-Seq)、生存相关DEG(RFC-Surv)以及一个组合模型。采用xCELL算法研究TME。共确定了212例接受ICI治疗的黑色素瘤患者。所有模型均获得了较高的曲线下面积(AUC)和自助估计值(RFC7分别为0.71、0.74;RFC-Seq分别为0.87、0.75;RFC-Surv分别为0.76、0.76)。肿瘤突变负荷、GSTA3和VNN2是贡献最大的特征。肿瘤浸润分析显示,上调基因与CD8 +、CD4 + T细胞和B细胞呈直接相关,与髓系来源的抑制细胞呈负相关。我们的研究结果证实了几种基于基因组、临床和转录组的RFC模型的准确性,这些模型可以进一步支持使用肿瘤突变负荷来预测对ICI的反应。通过RFC-seq和RFC-surv模型鉴定出了新基因(GSTA3和VNN2),经过充分验证后可作为基因组生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2880/9688789/b9c7ee8aa0fb/cancers-14-05605-g001.jpg

相似文献

4
Ferroptosis-related lncRNA signature predicts prognosis and immunotherapy efficacy in cutaneous melanoma.
Front Surg. 2022 Jul 21;9:860806. doi: 10.3389/fsurg.2022.860806. eCollection 2022.
5
Pan-cancer analysis of ARID family members as novel biomarkers for immune checkpoint inhibitor therapy.
Cancer Biol Ther. 2022 Dec 31;23(1):104-111. doi: 10.1080/15384047.2021.2011643.
6
An enhanced genetic mutation-based model for predicting the efficacy of immune checkpoint inhibitors in patients with melanoma.
Front Oncol. 2023 Jan 17;12:1077477. doi: 10.3389/fonc.2022.1077477. eCollection 2022.
7
Robust Prediction of Immune Checkpoint Inhibition Therapy for Non-Small Cell Lung Cancer.
Front Immunol. 2021 Apr 13;12:646874. doi: 10.3389/fimmu.2021.646874. eCollection 2021.

引用本文的文献

1
Adaptive individualized gene pair signatures distinguishing melanoma and predicting response to immune checkpoint blockade.
iScience. 2025 Aug 8;28(9):113329. doi: 10.1016/j.isci.2025.113329. eCollection 2025 Sep 19.
2
Immunological Aspects of Cancer Cell Metabolism.
Int J Mol Sci. 2024 May 13;25(10):5288. doi: 10.3390/ijms25105288.
3
A decision support system to recommend appropriate therapy protocol for AML patients.
Front Artif Intell. 2024 Mar 6;7:1343447. doi: 10.3389/frai.2024.1343447. eCollection 2024.
4
Informing immunotherapy with multi-omics driven machine learning.
NPJ Digit Med. 2024 Mar 14;7(1):67. doi: 10.1038/s41746-024-01043-6.
5
An update on methods for detection of prognostic and predictive biomarkers in melanoma.
Front Cell Dev Biol. 2023 Oct 13;11:1290696. doi: 10.3389/fcell.2023.1290696. eCollection 2023.

本文引用的文献

1
Machine Learning Predictor of Immune Checkpoint Blockade Response in Gastric Cancer.
Cancers (Basel). 2022 Jun 29;14(13):3191. doi: 10.3390/cancers14133191.
2
Recurrent somatic mutations as predictors of immunotherapy response.
Nat Commun. 2022 Jul 8;13(1):3938. doi: 10.1038/s41467-022-31055-3.
3
Network-based machine learning approach to predict immunotherapy response in cancer patients.
Nat Commun. 2022 Jun 28;13(1):3703. doi: 10.1038/s41467-022-31535-6.
4
Healthy myeloid-derived suppressor cells express the surface ectoenzyme Vanin-2 (VNN2).
Mol Immunol. 2022 Feb;142:1-10. doi: 10.1016/j.molimm.2021.12.011. Epub 2021 Dec 23.
5
GPI-80 Augments NF-κB Activation in Tumor Cells.
Int J Mol Sci. 2021 Nov 6;22(21):12027. doi: 10.3390/ijms222112027.
6
Improved prediction of immune checkpoint blockade efficacy across multiple cancer types.
Nat Biotechnol. 2022 Apr;40(4):499-506. doi: 10.1038/s41587-021-01070-8. Epub 2021 Nov 1.
7
Tumor Immune Microenvironment Characterization Identifies Prognosis and Immunotherapy-Related Gene Signatures in Melanoma.
Front Immunol. 2021 May 6;12:663495. doi: 10.3389/fimmu.2021.663495. eCollection 2021.
8
Tumor Mutational Burden as a Predictive Biomarker in Solid Tumors.
Cancer Discov. 2020 Dec;10(12):1808-1825. doi: 10.1158/2159-8290.CD-20-0522. Epub 2020 Nov 2.
9
Inhibitory effect of glutathione S-transferase A3 in the progression of cutaneous squamous cell carcinoma.
J Cosmet Dermatol. 2021 Jul;20(7):2287-2295. doi: 10.1111/jocd.13806. Epub 2020 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验