Suppr超能文献

一种基于TFFO和卷积神经网络的旋转机械不平衡故障诊断方法

An Imbalanced Fault Diagnosis Method Based on TFFO and CNN for Rotating Machinery.

作者信息

Zhang Long, Liu Yangyuan, Zhou Jianmin, Luo Muxu, Pu Shengxin, Yang Xiaotong

机构信息

School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China.

出版信息

Sensors (Basel). 2022 Nov 12;22(22):8749. doi: 10.3390/s22228749.

Abstract

Deep learning-based fault diagnosis usually requires a rich supply of data, but fault samples are scarce in practice, posing a considerable challenge for existing diagnosis approaches to achieve highly accurate fault detection in real applications. This paper proposes an imbalanced fault diagnosis of rotatory machinery that combines time-frequency feature oversampling (TFFO) with a convolutional neural network (CNN). First, the sliding segmentation sampling method is employed to primarily increase the number of fault samples in the form of one-dimensional signals. Immediately after, the signals are converted into two-dimensional time-frequency feature maps by continuous wavelet transform (CWT). Subsequently, the minority samples are expanded again using the synthetic minority oversampling technique (SMOTE) to realize TFFO. After such two-fold data expansion, a balanced data set is obtained and imported to an improved 2dCNN based on the LeNet-5 to implement fault diagnosis. In order to verify the proposed method, two experiments involving single and compound faults are conducted on locomotive wheel-set bearings and a gearbox, resulting in several datasets with different imbalanced degrees and various signal-to-noise ratios. The results demonstrate the advantages of the proposed method in terms of classification accuracy and stability as well as noise robustness in imbalanced fault diagnosis, and the fault classification accuracy is over 97%.

摘要

基于深度学习的故障诊断通常需要大量的数据支持,但在实际应用中故障样本却很稀缺,这给现有的诊断方法在实际应用中实现高精度的故障检测带来了巨大挑战。本文提出了一种旋转机械不平衡故障诊断方法,该方法将时频特征过采样(TFFO)与卷积神经网络(CNN)相结合。首先,采用滑动分割采样方法,以一维信号的形式初步增加故障样本数量。紧接着,通过连续小波变换(CWT)将信号转换为二维时频特征图。随后,使用合成少数过采样技术(SMOTE)再次对少数样本进行扩充,以实现时频特征过采样。经过这两步数据扩充后,获得一个平衡数据集,并将其导入基于LeNet-5改进的二维卷积神经网络(2dCNN)中进行故障诊断。为了验证所提方法的有效性,在机车轮对轴承和变速箱上进行了涉及单一故障和复合故障的两个实验,得到了几个具有不同不平衡程度和不同信噪比的数据集。结果表明,该方法在不平衡故障诊断中的分类精度、稳定性以及抗噪声鲁棒性方面具有优势,故障分类准确率超过97%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验