Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland.
Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.
Genome Biol. 2022 Nov 30;23(1):248. doi: 10.1186/s13059-022-02813-9.
We present SIEVE, a statistical method for the joint inference of somatic variants and cell phylogeny under the finite-sites assumption from single-cell DNA sequencing. SIEVE leverages raw read counts for all nucleotides and corrects the acquisition bias of branch lengths. In our simulations, SIEVE outperforms other methods in phylogenetic reconstruction and variant calling accuracy, especially in the inference of homozygous variants. Applying SIEVE to three datasets, one for triple-negative breast (TNBC), and two for colorectal cancer (CRC), we find that double mutant genotypes are rare in CRC but unexpectedly frequent in the TNBC samples.
我们提出了 SIEVE,这是一种在有限位点假设下,从单细胞 DNA 测序中联合推断体细胞变体和细胞系统发育的统计方法。SIEVE 利用所有核苷酸的原始读取计数,并校正分支长度的获取偏差。在我们的模拟中,SIEVE 在系统发育重建和变体调用准确性方面优于其他方法,特别是在纯合变体的推断方面。将 SIEVE 应用于三个数据集,一个用于三阴性乳腺癌(TNBC),两个用于结直肠癌(CRC),我们发现 CRC 中双突变基因型很少见,但在 TNBC 样本中出乎意料地频繁。