Zhang Huiting, Wafula Eric K, Eilers Jon, Harkess Alex E, Ralph Paula E, Timilsena Prakash Raj, dePamphilis Claude W, Waite Jessica M, Honaas Loren A
Tree Fruit Research Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Wenatchee, WA, United States.
Department of Horticulture, Washington State University, Pullman, WA, United States.
Front Plant Sci. 2022 Nov 14;13:975942. doi: 10.3389/fpls.2022.975942. eCollection 2022.
The rapid development of sequencing technologies has led to a deeper understanding of plant genomes. However, direct experimental evidence connecting genes to important agronomic traits is still lacking in most non-model plants. For instance, the genetic mechanisms underlying plant architecture are poorly understood in pome fruit trees, creating a major hurdle in developing new cultivars with desirable architecture, such as dwarfing rootstocks in European pear (). An efficient way to identify genetic factors for important traits in non-model organisms can be to transfer knowledge across genomes. However, major obstacles exist, including complex evolutionary histories and variable quality and content of publicly available plant genomes. As researchers aim to link genes to traits of interest, these challenges can impede the transfer of experimental evidence across plant species, namely in the curation of high-quality, high-confidence gene models in an evolutionary context. Here we present a workflow using a collection of bioinformatic tools for the curation of deeply conserved gene families of interest across plant genomes. To study gene families involved in tree architecture in European pear and other rosaceous species, we used our workflow, plus a draft genome assembly and high-quality annotation of a second cultivar, 'd'Anjou.' Our comparative gene family approach revealed significant issues with the most recent 'Bartlett' genome - primarily thousands of missing genes due to methodological bias. After correcting assembly errors on a global scale in the 'Bartlett' genome, we used our workflow for targeted improvement of our genes of interest in both genomes, thus laying the groundwork for future functional studies in pear tree architecture. Further, our global gene family classification of 15 genomes across 6 genera provides a valuable and previously unavailable resource for the Rosaceae research community. With it, orthologs and other gene family members can be easily identified across any of the classified genomes. Importantly, our workflow can be easily adopted for any other plant genomes and gene families of interest.
测序技术的快速发展使人们对植物基因组有了更深入的了解。然而,在大多数非模式植物中,将基因与重要农艺性状联系起来的直接实验证据仍然缺乏。例如,在仁果类果树中,对植物株型的遗传机制了解甚少,这在培育具有理想株型的新品种时成为一个主要障碍,比如欧洲梨的矮化砧木()。在非模式生物中识别重要性状遗传因素的一种有效方法是跨基因组转移知识。然而,存在一些主要障碍,包括复杂的进化历史以及公开可用植物基因组的质量和内容参差不齐。随着研究人员旨在将基因与感兴趣的性状联系起来,这些挑战可能会阻碍跨植物物种的实验证据转移,即在进化背景下高质量、高可信度基因模型的整理。在此,我们展示了一种工作流程,该流程使用一系列生物信息学工具来整理植物基因组中深度保守的感兴趣基因家族。为了研究欧洲梨和其他蔷薇科物种中参与树型结构的基因家族,我们使用了我们的工作流程,以及第二个品种‘昂乔’的基因组草图组装和高质量注释。我们的比较基因家族方法揭示了最新的‘巴特利特’基因组存在的重大问题——主要是由于方法偏差导致数千个基因缺失。在对‘巴特利特’基因组进行全球范围内的组装错误校正后,我们使用我们的工作流程对两个基因组中感兴趣的基因进行有针对性的改进,从而为梨树树型结构的未来功能研究奠定基础。此外,我们对6个属的15个基因组进行的全球基因家族分类为蔷薇科研究界提供了一个有价值且以前无法获得的资源。有了它,可以在任何分类基因组中轻松识别直系同源基因和其他基因家族成员。重要的是,我们的工作流程可以很容易地应用于任何其他感兴趣的植物基因组和基因家族。