Suppr超能文献

多重集多重覆盖方法用于判别标记选择。

Multiset multicover methods for discriminative marker selection.

机构信息

Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

出版信息

Cell Rep Methods. 2022 Nov 11;2(11):100332. doi: 10.1016/j.crmeth.2022.100332. eCollection 2022 Nov 21.

Abstract

Markers are increasingly being used for several high-throughput data analysis and experimental design tasks. Examples include the use of markers for assigning cell types in scRNA-seq studies, for deconvolving bulk gene expression data, and for selecting marker proteins in single-cell spatial proteomics studies. Most marker selection methods focus on differential expression (DE) analysis. Although such methods work well for data with a few non-overlapping marker sets, they are not appropriate for large atlas-size datasets where several cell types and tissues are considered. To address this, we define the phenotype cover (PC) problem for marker selection and present algorithms that can improve the discriminative power of marker sets. Analysis of these sets on several marker-selection tasks suggests that these methods can lead to solutions that accurately distinguish different phenotypes in the data.

摘要

标记物越来越多地被用于多种高通量数据分析和实验设计任务。例如,在 scRNA-seq 研究中使用标记物来分配细胞类型,对批量基因表达数据进行去卷积,以及在单细胞空间蛋白质组学研究中选择标记蛋白。大多数标记物选择方法都集中在差异表达(DE)分析上。虽然这些方法对于具有少数不重叠的标记集的数据效果很好,但对于考虑了几种细胞类型和组织的大型图谱数据集来说并不适用。为了解决这个问题,我们定义了用于标记物选择的表型覆盖率(PC)问题,并提出了可以提高标记物集区分能力的算法。在几个标记物选择任务上对这些集合的分析表明,这些方法可以得到准确区分数据中不同表型的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c072/9701606/f6d5015086fc/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验