Suppr超能文献

SEPRES:用于预测脓毒症的重症监护病房临床数据集成系统。

SEPRES: Intensive Care Unit Clinical Data Integration System to Predict Sepsis.

机构信息

Division of Applied Mathematics, Fudan University, Shanghai, China.

Department of Critical Care Medicine, Shanghai Jiaotong University School of Medicine, Ruijin Hospital, Shanghai, China.

出版信息

Appl Clin Inform. 2023 Jan;14(1):65-75. doi: 10.1055/a-1990-3037. Epub 2022 Nov 30.

Abstract

BACKGROUND

The lack of information interoperability between different devices and systems in the intensive care unit (ICU) hinders further utilization of data, especially for early warning of specific diseases in the ICU.

OBJECTIVES

We aimed to establish a data integration system. Based on this system, the sepsis prediction module was added to compose the Sepsis PREdiction System (SEPRES), where real-time early warning of sepsis can be implemented at the bedside in the ICU.

METHODS

Data are collected from bedside devices through the integration hub and uploaded to the integration system through the local area network. The data integration system was designed to integrate vital signs data, laboratory data, ventilator data, demographic data, pharmacy data, nursing data, etc. from multiple medical devices and systems. It integrates, standardizes, and stores information, making the real-time inference of the early warning module possible. The built-in sepsis early warning module can detect the onset of sepsis within 5 hours preceding at most.

RESULTS

Our data integration system has already been deployed in Ruijin Hospital, confirming the feasibility of our system.

CONCLUSION

We highlight that SEPRES has the potential to improve ICU management by helping medical practitioners identify at-sepsis-risk patients and prepare for timely diagnosis and intervention.

摘要

背景

重症监护病房(ICU)中不同设备和系统之间缺乏信息互操作性,这阻碍了数据的进一步利用,特别是在 ICU 中对特定疾病进行早期预警。

目的

我们旨在建立一个数据集成系统。在此系统基础上,增加脓毒症预测模块,组成脓毒症预测系统(SEPRES),以便在 ICU 床边实现脓毒症的实时早期预警。

方法

通过集成中心从床边设备中采集数据,并通过局域网将数据上传到集成系统。数据集成系统旨在整合来自多个医疗设备和系统的生命体征数据、实验室数据、呼吸机数据、人口统计学数据、药房数据、护理数据等。它整合、标准化和存储信息,使早期预警模块的实时推断成为可能。内置的脓毒症早期预警模块可以在脓毒症发作前最多 5 小时内检测到。

结果

我们的数据集成系统已经在瑞金医院部署,证实了我们系统的可行性。

结论

我们强调 SEPRES 有可能通过帮助临床医生识别处于脓毒症风险中的患者并为及时诊断和干预做好准备,从而改善 ICU 管理。

相似文献

7
Implementation of a Vital Sign Alert System to Improve Outcomes.实施生命体征警报系统以改善治疗效果。
J Nurs Care Qual. 2019 Oct/Dec;34(4):346-351. doi: 10.1097/NCQ.0000000000000384.

本文引用的文献

4
Evaluation of a Sepsis Alert in the Pediatric Acute Care Setting.儿科急症环境中脓毒症警报的评估。
Appl Clin Inform. 2021 May;12(3):469-478. doi: 10.1055/s-0041-1730027. Epub 2021 May 26.
8
A Review of Predictive Analytics Solutions for Sepsis Patients.脓毒症患者预测分析解决方案综述
Appl Clin Inform. 2020 May;11(3):387-398. doi: 10.1055/s-0040-1710525. Epub 2020 May 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验