Suppr超能文献

一种用于重症监护病房的机器学习脓毒症预测算法(NAVOY脓毒症):概念验证研究

A Machine Learning Sepsis Prediction Algorithm for Intended Intensive Care Unit Use (NAVOY Sepsis): Proof-of-Concept Study.

作者信息

Persson Inger, Östling Andreas, Arlbrandt Martin, Söderberg Joakim, Becedas David

机构信息

Department of Statistics, Uppsala University, Uppsala, Sweden.

AlgoDx AB, Stockholm, Sweden.

出版信息

JMIR Form Res. 2021 Sep 30;5(9):e28000. doi: 10.2196/28000.

Abstract

BACKGROUND

Despite decades of research, sepsis remains a leading cause of mortality and morbidity in intensive care units worldwide. The key to effective management and patient outcome is early detection, for which no prospectively validated machine learning prediction algorithm is currently available for clinical use in Europe.

OBJECTIVE

We aimed to develop a high-performance machine learning sepsis prediction algorithm based on routinely collected intensive care unit data, designed to be implemented in European intensive care units.

METHODS

The machine learning algorithm was developed using convolutional neural networks, based on Massachusetts Institute of Technology Lab for Computational Physiology MIMIC-III clinical data from intensive care unit patients aged 18 years or older. The model uses 20 variables to produce hourly predictions of onset of sepsis, defined by international Sepsis-3 criteria. Predictive performance was externally validated using hold-out test data.

RESULTS

The algorithm-NAVOY Sepsis-uses 4 hours of input and can identify patients with high risk of developing sepsis, with high performance (area under the receiver operating characteristics curve 0.90; area under the precision-recall curve 0.62) for predictions up to 3 hours before sepsis onset.

CONCLUSIONS

The prediction performance of NAVOY Sepsis was superior to that of existing sepsis early warning scoring systems and comparable with those of other prediction algorithms designed to predict sepsis onset. The algorithm has excellent predictive properties and uses variables that are routinely collected in intensive care units.

摘要

背景

尽管经过数十年研究,脓毒症仍是全球重症监护病房中导致死亡和发病的主要原因。有效管理和改善患者预后的关键在于早期检测,而目前在欧洲尚无经前瞻性验证的机器学习预测算法可用于临床。

目的

我们旨在基于常规收集的重症监护病房数据开发一种高性能的机器学习脓毒症预测算法,以便在欧洲重症监护病房中应用。

方法

该机器学习算法是使用卷积神经网络开发的,基于麻省理工学院计算生理学实验室的MIMIC-III临床数据,这些数据来自18岁及以上的重症监护病房患者。该模型使用20个变量来生成每小时脓毒症发作的预测,脓毒症发作由国际脓毒症-3标准定义。预测性能通过留出测试数据进行外部验证。

结果

该算法——NAVOY脓毒症算法——使用4小时的输入数据,能够识别有发生脓毒症高风险的患者,在脓毒症发作前3小时内的预测具有高性能(受试者操作特征曲线下面积为0.90;精确召回率曲线下面积为0.62)。

结论

NAVOY脓毒症算法的预测性能优于现有的脓毒症早期预警评分系统,与其他旨在预测脓毒症发作的预测算法相当。该算法具有出色的预测特性,并且使用重症监护病房中常规收集的变量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b906/8517825/903dad1d5156/formative_v5i9e28000_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验