Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.
Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China.
Adv Mater. 2023 Feb;35(6):e2208664. doi: 10.1002/adma.202208664. Epub 2022 Dec 18.
Nonvolatile optoelectronic memory (NVOM) integrating the functions of optical sensing and long-term memory can efficiently process and store a large amount of visual scene information, which has become the core requirement of multiple intelligence scenarios. However, realizing NVOM with vis-infrared broadband response is still challenging. Herein, the room temperature vis-infrared broadband NVOM based on few-layer MoS /2D Ruddlesden-Popper perovskite (2D-RPP) van der Waals heterojunction is realized. It is found that the 2D-RPP converts the initial n-type MoS into p-type and facilitates hole transfer between them. Furthermore, the 2D-RPP rich in interband states serves as an effective electron trapping layer as well as broadband photoresponsive layer. As a result, the dielectric-free MoS /2D-RPP heterojunction enables the charge to transfer quickly under external field, which enables a large memory window (104 V), fast write speed of 20 µs, and optical programmable characteristics from visible light (405 nm) to telecommunication wavelengths (i.e., 1550 nm) at room temperature. Trapezoidal optical programming can produce up to 100 recognizable states (>6 bits), with operating energy as low as 5.1 pJ per optical program. These results provide a route to realize fast, low power, multi-bit optoelectronic memory from visible to the infrared wavelength.
非易失性光电子存储器(NVOM)集成了光学传感和长期存储功能,可以有效地处理和存储大量的视觉场景信息,这已成为多种智能场景的核心要求。然而,实现具有宽视-红外响应的 NVOM 仍然具有挑战性。在此,实现了基于少层 MoS/二维 Ruddlesden-Popper 钙钛矿(2D-RPP)范德瓦尔斯异质结的室温宽视-红外宽带 NVOM。研究发现,2D-RPP 将初始的 n 型 MoS 转变为 p 型,并促进它们之间的空穴转移。此外,具有丰富的带间态的 2D-RPP 作为有效的电子俘获层以及宽带光响应层。结果,无介电常数的 MoS/2D-RPP 异质结使得电荷在外电场下能够快速转移,从而在室温下实现了从可见光(405nm)到光通信波长(即 1550nm)的大存储窗口(104V)、20µs 的快速写入速度和光可程控特性。梯形光编程可产生多达 100 个可识别状态(>6 位),每个光程序的操作能量低至 5.1pJ。这些结果为从可见光到红外波长实现快速、低功耗、多位光电存储器提供了一条途径。