Miao Jialei, Wu Linlu, Bian Zheng, Zhu Qinghai, Zhang Tianjiao, Pan Xin, Hu Jiayang, Xu Wei, Wang Yeliang, Xu Yang, Yu Bin, Ji Wei, Zhang Xiaowei, Qiao Jingsi, Samorì Paolo, Zhao Yuda
School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, 38 Zheda Road, Hangzhou310027, China.
Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo315211, China.
ACS Nano. 2022 Dec 27;16(12):20647-20655. doi: 10.1021/acsnano.2c07670. Epub 2022 Dec 1.
Two-dimensional (2D) materials with the atomically thin thickness have attracted great interest in the post-Moore's Law era because of their tremendous potential to continue transistor downscaling and offered advances in device performance at the atomic limit. However, the metal-semiconductor contact is the bottleneck in field-effect transistors (FETs) integrating 2D semiconductors as channel materials. A robust and tunable doping method at the source and drain region of 2D transistors to minimize the contact resistance is highly sought after. Here we report a stable carrier doping method via the mild covalent grafting of maleimides on the surface of 2D transition metal dichalcogenides. The chemisorbed interaction contributes to the efficient carrier doping without degrading the high-performance carrier transport. Density functional theory results further illustrate that the molecular functionalization leads to the mild hybridization and the negligible impact on the conduction bands of monolayer MoS, avoiding the random scattering from the dopants. Differently from reported molecular treatments, our strategy displays high thermal stability (above 300 °C) and it is compatible with micro/nano processing technology. The contact resistance of MoS FETs can be greatly reduced by ∼12 times after molecular functionalization. The Schottky barrier of 44 meV is achieved on monolayer MoS FETs, demonstrating efficient charge injection between metal and 2D semiconductor. The mild covalent functionalization of molecules on 2D semiconductors represents a powerful strategy to perform the carrier doping and the device optimization.
在摩尔定律后的时代,具有原子级超薄厚度的二维(2D)材料因其在继续缩小晶体管尺寸方面的巨大潜力以及在原子极限下提升器件性能而备受关注。然而,金属 - 半导体接触是将二维半导体作为沟道材料集成到场效应晶体管(FET)中的瓶颈。人们迫切需要一种在二维晶体管的源极和漏极区域实现稳健且可调的掺杂方法,以最小化接触电阻。在此,我们报道了一种通过马来酰亚胺在二维过渡金属二硫属化物表面进行温和共价接枝的稳定载流子掺杂方法。化学吸附相互作用有助于实现高效的载流子掺杂,同时不会降低高性能的载流子传输。密度泛函理论结果进一步表明,分子功能化导致温和的杂化,并且对单层MoS的导带影响可忽略不计,避免了来自掺杂剂的随机散射。与已报道的分子处理方法不同,我们的策略具有高热稳定性(高于300°C),并且与微/纳米加工技术兼容。分子功能化后,MoS FET的接触电阻可大幅降低约12倍。在单层MoS FET上实现了44 meV的肖特基势垒,证明了金属与二维半导体之间的高效电荷注入。二维半导体上分子的温和共价功能化代表了一种进行载流子掺杂和器件优化的有力策略。