Gallant Benjamin M, Holzhey Philippe, Smith Joel A, Choudhary Saqlain, Elmestekawy Karim A, Caprioglio Pietro, Levine Igal, Sheader Alexandra A, Hung Esther Y-H, Yang Fengning, Toolan Daniel T W, Kilbride Rachel C, Zaininger Karl-Augustin, Ball James M, Christoforo M Greyson, Noel Nakita K, Herz Laura M, Kubicki Dominik J, Snaith Henry J
Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom.
School of Chemistry, University of Birmingham, B15 2TT, Birmingham, UK.
Nat Commun. 2024 Nov 22;15(1):10110. doi: 10.1038/s41467-024-54113-4.
Perovskite solar cells (PSCs) offer an efficient, inexpensive alternative to current photovoltaic technologies, with the potential for manufacture via high-throughput coating methods. However, challenges for commercial-scale solution-processing of metal-halide perovskites include the use of harmful solvents, the expense of maintaining controlled atmospheric conditions, and the inherent instabilities of PSCs under operation. Here, we address these challenges by introducing a high volatility, low toxicity, biorenewable solvent system to fabricate a range of 2D perovskites, which we use as highly effective precursor phases for subsequent transformation to α-formamidinium lead triiodide (α-FAPbI), fully processed under ambient conditions. PSCs utilising our α-FAPbI reproducibly show remarkable stability under illumination and elevated temperature (ISOS-L-2) and "damp heat" (ISOS-D-3) stressing, surpassing other state-of-the-art perovskite compositions. We determine that this enhancement is a consequence of the 2D precursor phase crystallisation route, which simultaneously avoids retention of residual low-volatility solvents (such as DMF and DMSO) and reduces the rate of degradation of FA in the material. Our findings highlight both the critical role of the initial crystallisation process in determining the operational stability of perovskite materials, and that neat FA-based perovskites can be competitively stable despite the inherent metastability of the α-phase.
钙钛矿太阳能电池(PSCs)为当前的光伏技术提供了一种高效、廉价的替代方案,具有通过高通量涂层方法进行制造的潜力。然而,金属卤化物钙钛矿商业化规模溶液处理面临的挑战包括使用有害溶剂、维持可控大气条件的成本以及PSCs在运行中的固有不稳定性。在此,我们通过引入一种高挥发性、低毒性、生物可再生的溶剂体系来应对这些挑战,以制备一系列二维钙钛矿,我们将其用作后续转化为α-甲脒基碘化铅(α-FAPbI)的高效前驱体相,该转化过程在环境条件下完全进行。利用我们的α-FAPbI制备的PSCs在光照和高温(ISOS-L-2)以及“湿热”(ISOS-D-3)应力条件下可重复地表现出显著的稳定性,超过了其他最先进的钙钛矿组合物。我们确定这种增强是二维前驱体相结晶路线的结果,该路线同时避免了残留低挥发性溶剂(如DMF和DMSO) 的保留,并降低了材料中FA的降解速率。我们的研究结果突出了初始结晶过程在决定钙钛矿材料运行稳定性方面的关键作用,并且尽管α相具有固有的亚稳定性,但纯FA基钙钛矿仍可具有具有竞争力的稳定性。