Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany.
Department of Physics and Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K.
J Am Chem Soc. 2022 Dec 21;144(50):22902-22914. doi: 10.1021/jacs.2c06233. Epub 2022 Dec 2.
The magnetic compass of migratory birds is thought to rely on a radical pair reaction inside the blue-light photoreceptor protein cryptochrome. The sensitivity of such a sensor to weak external magnetic fields is determined by a variety of magnetic interactions, including electron-nuclear hyperfine interactions. Here, we investigate the implications of thermal motion, focusing on fluctuations in the dihedral and librational angles of flavin adenine dinucleotide (FAD) and tryptophan (Trp) radicals in cryptochrome 4a from European robin (, ErCry4a) and pigeon (, ClCry4a) and cryptochrome 1 from the plant (AtCry1). Molecular dynamics simulations and density functional theory-derived hyperfine interactions are used to calculate the quantum yield of radical pair recombination dependent on the direction of the geomagnetic field. This quantity and various dynamical parameters are compared for [FAD Trp] in ErCry4a, ClCry4a, and AtCry1, with TrpC or TrpD being the third and fourth components of the tryptophan triad/tetrad in the respective proteins. We find that (i) differences in the average dihedral angles in the radical pairs are small, (ii) the librational motions of TrpC in the avian cryptochromes are appreciably smaller than in AtCry1, (iii) the rapid vibrational motions of the radicals leading to strong fluctuations in the hyperfine couplings affect the spin dynamics depending on the usage of instantaneous or time-averaged interactions. Future investigations of radical pair compass sensitivity should therefore not be based on single snapshots of the protein structure but should include the ensemble properties of the hyperfine interactions.
候鸟的磁罗盘被认为依赖于蓝敏光感受器蛋白隐花色素内的自由基对反应。这种传感器对弱磁场的敏感性取决于多种磁相互作用,包括电子-核超精细相互作用。在这里,我们研究了热运动的影响,重点研究了欧洲知更鸟( ,ErCry4a)和鸽子( ,ClCry4a)的隐花色素 4a 以及植物的隐花色素 1( ,AtCry1)中黄素腺嘌呤二核苷酸(FAD)和色氨酸(Trp)自由基的二面角和回旋角的波动。分子动力学模拟和基于密度泛函理论的超精细相互作用用于计算依赖于地磁场方向的自由基对重组的量子产率。将 [FAD Trp]在 ErCry4a、ClCry4a 和 AtCry1 中的这一数量和各种动力学参数进行了比较,其中 TrpC 或 TrpD 是相应蛋白质中色氨酸三联体/四联体的第三和第四成分。我们发现:(i)自由基对中平均二面角的差异很小;(ii)鸟类隐花色素中 TrpC 的回旋运动明显小于 AtCry1;(iii)导致超精细耦合强烈波动的自由基的快速振动运动会影响自旋动力学,具体取决于使用瞬时还是时间平均相互作用。因此,未来对自由基对罗盘灵敏度的研究不应基于蛋白质结构的单个快照,而应包括超精细相互作用的整体性质。