Suppr超能文献

利用集成机器学习模型进行非靶向性食品掺假检测。

Non-targeted detection of food adulteration using an ensemble machine-learning model.

机构信息

Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.

Research and Innovation Office, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.

出版信息

Sci Rep. 2022 Dec 5;12(1):20956. doi: 10.1038/s41598-022-25452-3.

Abstract

Recurrent incidents of economically motivated adulteration have long-lasting and devastating effects on public health, economy, and society. With the current food authentication methods being target-oriented, the lack of an effective methodology to detect unencountered adulterants can lead to the next melamine-like outbreak. In this study, an ensemble machine-learning model that can help detect unprecedented adulteration without looking for specific substances, that is, in a non-targeted approach, is proposed. Using raw milk as an example, the proposed model achieved an accuracy and F1 score of 0.9924 and 0. 0.9913, respectively, when the same type of adulterants was presented in the training data. Cross-validation with spiked contaminants not routinely tested in the food industry and blinded from the training data provided an F1 score of 0.8657. This is the first study that demonstrates the feasibility of non-targeted detection with no a priori knowledge of the presence of certain adulterants using data from standard industrial testing as input. By uncovering discriminative profiling patterns, the ensemble machine-learning model can monitor and flag suspicious samples; this technique can potentially be extended to other food commodities and thus become an important contributor to public food safety.

摘要

经济利益驱动的掺假事件时有发生,对公共卫生、经济和社会造成持久而严重的影响。由于当前的食品鉴定方法是针对目标的,缺乏一种有效的方法来检测未遇到的掺假剂可能会导致下一次类似三聚氰胺的爆发。在这项研究中,提出了一种集成机器学习模型,该模型可以帮助在不寻找特定物质的情况下检测前所未有的掺假,即采用非靶向方法。以生乳为例,当训练数据中存在相同类型的掺杂物时,所提出的模型在准确性和 F1 分数方面分别达到了 0.9924 和 0.9913。使用食品工业中常规测试未检测到的掺杂物进行交叉验证,并对训练数据进行盲处理,得到的 F1 分数为 0.8657。这是第一项使用来自标准工业测试的数据作为输入,展示使用无先验知识的非靶向检测某些掺杂物的可行性的研究。通过揭示有区别的分析模式,集成机器学习模型可以监测和标记可疑样本;该技术有可能扩展到其他食品商品,从而成为公共食品安全的重要贡献者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6eea/9722920/991fb760b4bf/41598_2022_25452_Fig1a_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验