Suppr超能文献

约束球面反卷积非球采样扩散 MRI 数据。

Constrained spherical deconvolution of nonspherically sampled diffusion MRI data.

机构信息

Imec-Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium.

Department of Radiology, University Hospital Antwerp, Antwerp, Belgium.

出版信息

Hum Brain Mapp. 2021 Feb 1;42(2):521-538. doi: 10.1002/hbm.25241. Epub 2020 Nov 10.

Abstract

Constrained spherical deconvolution (CSD) of diffusion-weighted MRI (DW-MRI) is a popular analysis method that extracts the full white matter (WM) fiber orientation density function (fODF) in the living human brain, noninvasively. It assumes that the DW-MRI signal on the sphere can be represented as the spherical convolution of a single-fiber response function (RF) and the fODF, and recovers the fODF through the inverse operation. CSD approaches typically require that the DW-MRI data is sampled shell-wise, and estimate the RF in a purely spherical manner using spherical basis functions, such as spherical harmonics (SH), disregarding any radial dependencies. This precludes analysis of data acquired with nonspherical sampling schemes, for example, Cartesian sampling. Additionally, nonspherical sampling can also arise due to technical issues, for example, gradient nonlinearities, resulting in a spatially dependent bias of the apparent tissue densities and connectivity information. Here, we adopt a compact model for the RFs that also describes their radial dependency. We demonstrate that the proposed model can accurately predict the tissue response for a wide range of b-values. On shell-wise data, our approach provides fODFs and tissue densities indistinguishable from those estimated using SH. On Cartesian data, fODF estimates and apparent tissue densities are on par with those obtained from shell-wise data, significantly broadening the range of data sets that can be analyzed using CSD. In addition, gradient nonlinearities can be accounted for using the proposed model, resulting in much more accurate apparent tissue densities and connectivity metrics.

摘要

受限球谐分解(CSD)是一种流行的分析方法,可从活体人脑的弥散加权磁共振成像(DW-MRI)中无创地提取完整的白质(WM)纤维方向密度函数(fODF)。它假设球上的 DW-MRI 信号可以表示为单纤维响应函数(RF)和 fODF 的球谐卷积,并通过逆运算来恢复 fODF。CSD 方法通常要求 DW-MRI 数据按壳层采样,并使用球形基函数(如球谐函数(SH))以纯球形方式估计 RF,而不考虑任何径向依赖性。这排除了对非球形采样方案(例如笛卡尔采样)采集的数据进行分析的可能性。此外,非球形采样也可能由于技术问题而产生,例如梯度非线性,从而导致表观组织密度和连通性信息的空间相关偏差。在这里,我们采用了一种描述 RF 径向依赖性的紧凑模型。我们证明,所提出的模型可以准确预测各种 b 值下的组织响应。对于壳层数据,我们的方法提供的 fODF 和组织密度与使用 SH 估计的那些无法区分。对于笛卡尔数据,fODF 估计和表观组织密度与从壳层数据获得的那些相当,大大拓宽了可以使用 CSD 进行分析的数据集范围。此外,还可以使用所提出的模型来考虑梯度非线性,从而产生更准确的表观组织密度和连通性度量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aae/7776001/f4785f74037f/HBM-42-521-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验