London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK.
Department of Electronic and Electrical Engineering, University College London, London, WC1E 6BT, UK.
Angew Chem Int Ed Engl. 2023 Feb 6;62(7):e202213982. doi: 10.1002/anie.202213982. Epub 2023 Jan 10.
Germanium has emerged as an exceptionally promising material for spintronics and quantum information applications, with significant fundamental advantages over silicon. However, efforts to create atomic-scale devices using donor atoms as qubits have largely focused on phosphorus in silicon. Positioning phosphorus in silicon with atomic-scale precision requires a thermal incorporation anneal, but the low success rate for this step has been shown to be a fundamental limitation prohibiting the scale-up to large-scale devices. Here, we present a comprehensive study of arsine (AsH ) on the germanium (001) surface. We show that, unlike any previously studied dopant precursor on silicon or germanium, arsenic atoms fully incorporate into substitutional surface lattice sites at room temperature. Our results pave the way for the next generation of atomic-scale donor devices combining the superior electronic properties of germanium with the enhanced properties of arsine/germanium chemistry that promises scale-up to large numbers of deterministically placed qubits.
锗作为一种在自旋电子学和量子信息应用中具有特殊前景的材料,与硅相比具有显著的优势。然而,利用施主原子作为量子比特制造原子级器件的努力主要集中在硅中的磷上。在硅中以原子级精度定位磷需要热掺入退火,但这一步骤的低成功率已被证明是一个根本限制,阻止了向大规模器件的扩展。在这里,我们对砷烷(AsH )在锗(001)表面上进行了全面的研究。我们表明,与以前在硅或锗上研究过的任何掺杂剂前体不同,砷原子在室温下完全掺入取代晶格位。我们的结果为下一代原子级施主器件铺平了道路,这些器件将锗的优异电子性能与砷烷/锗化学的增强性能相结合,有望实现大规模确定性放置量子比特的扩展。