Suppr超能文献

轴向中胚层发育过程中的信号梯度。

Signaling gradients during paraxial mesoderm development.

机构信息

Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.

出版信息

Cold Spring Harb Perspect Biol. 2010 Feb;2(2):a000869. doi: 10.1101/cshperspect.a000869.

Abstract

The sequential formation of somites along the anterior-posterior axis is under control of multiple signaling gradients involving the Wnt, FGF, and retinoic acid (RA) pathways. These pathways show graded distribution of signaling activity within the paraxial mesoderm of vertebrate embryos. Although Wnt and FGF signaling show highest activity in the posterior, unsegmented paraxial mesoderm (presomitic mesoderm [PSM]), RA signaling establishes a countergradient with the highest activity in the somites. The generation of these graded activities relies both on classical source-sink mechanisms (for RA signaling) and on an RNA decay mechanism (for FGF signaling). Numerous studies reveal the tight interconnection among Wnt, FGF, and RA signaling in controlling paraxial mesoderm differentiation and in defining the somite-forming unit. In particular, the relationship to a molecular oscillator acting in somite precursors in the PSM-called the segmentation clock-has been recently addressed. These studies indicate that high levels of Wnt and FGF signaling are required for the segmentation clock activity. Furthermore, we discuss how these signaling gradients act in a dose-dependent manner in the progenitors of the paraxial mesoderm, partly by regulating cell movements during gastrulation. Finally, links between the process of axial specification of vertebral segments and Hox gene expression are discussed.

摘要

沿前-后轴顺序形成体节受涉及 Wnt、FGF 和视黄酸 (RA) 途径的多个信号梯度的控制。这些途径在脊椎动物胚胎的轴旁中胚层中显示信号活性的梯度分布。尽管 Wnt 和 FGF 信号显示在后未分段的轴旁中胚层(前体节中胚层 [PSM])中具有最高活性,但 RA 信号建立了一个与体节中最高活性的反梯度。这些梯度活性的产生既依赖于经典的源-汇机制(对于 RA 信号),也依赖于 RNA 降解机制(对于 FGF 信号)。许多研究揭示了 Wnt、FGF 和 RA 信号在控制轴旁中胚层分化和定义体节形成单位中的紧密相互联系。特别是,最近已经解决了在 PSM 中的体节前体中起作用的分子振荡器(称为体节时钟)与它们之间的关系。这些研究表明,高水平的 Wnt 和 FGF 信号对于体节时钟活性是必需的。此外,我们讨论了这些信号梯度如何以剂量依赖的方式在轴旁中胚层的祖细胞中发挥作用,部分通过调节原肠胚形成期间的细胞运动。最后,讨论了脊椎段的轴向指定过程与 Hox 基因表达之间的联系。

相似文献

1
Signaling gradients during paraxial mesoderm development.
Cold Spring Harb Perspect Biol. 2010 Feb;2(2):a000869. doi: 10.1101/cshperspect.a000869.
2
Different Concentrations of FGF Ligands, FGF2 or FGF8 Determine Distinct States of WNT-Induced Presomitic Mesoderm.
Stem Cells. 2016 Jul;34(7):1790-800. doi: 10.1002/stem.2371. Epub 2016 Apr 18.
3
Revisiting the involvement of signaling gradients in somitogenesis.
FEBS J. 2016 Apr;283(8):1430-7. doi: 10.1111/febs.13622. Epub 2015 Dec 31.
4
The road to the vertebral formula.
Int J Dev Biol. 2009;53(8-10):1469-81. doi: 10.1387/ijdb.072276mm.
6
Signalling dynamics in vertebrate segmentation.
Nat Rev Mol Cell Biol. 2014 Nov;15(11):709-21. doi: 10.1038/nrm3891.
8
Establishment of Hox vertebral identities in the embryonic spine precursors.
Curr Top Dev Biol. 2009;88:201-34. doi: 10.1016/S0070-2153(09)88007-1.
10
Modeling of segmentation clock mechanism in presomitic mesoderm.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3267-70. doi: 10.1109/IEMBS.2009.5333510.

引用本文的文献

2
Coping with uncertainty: Challenges for robust pattern formation in dynamical tissues.
Semin Cell Dev Biol. 2025 Sep;173:103629. doi: 10.1016/j.semcdb.2025.103629. Epub 2025 Jul 8.
3
Advances in engineered models of peri-gastrulation.
iScience. 2025 May 14;28(6):112659. doi: 10.1016/j.isci.2025.112659. eCollection 2025 Jun 20.
4
Computational modeling of plant root development: the art and the science.
New Phytol. 2025 Jun;246(6):2446-2461. doi: 10.1111/nph.70164. Epub 2025 Apr 23.
5
The physical roles of different posterior tissues in zebrafish axis elongation.
Nat Commun. 2025 Feb 21;16(1):1839. doi: 10.1038/s41467-025-56334-7.
6
Prickle2 regulates apical junction remodeling and tissue fluidity during vertebrate neurulation.
J Cell Biol. 2025 Apr 7;224(4). doi: 10.1083/jcb.202407025. Epub 2025 Feb 14.
7
Cell-autonomous timing drives the vertebrate segmentation clock's wave pattern.
Elife. 2024 Dec 13;13:RP93764. doi: 10.7554/eLife.93764.
8
Modeling of skeletal development and diseases using human pluripotent stem cells.
J Bone Miner Res. 2024 Dec 31;40(1):5-19. doi: 10.1093/jbmr/zjae178.
9
Retinoic acid induces human gastruloids with posterior embryo-like structures.
Nat Cell Biol. 2024 Oct;26(10):1790-1803. doi: 10.1038/s41556-024-01487-8. Epub 2024 Aug 20.
10
The molecular and cellular hematopoietic stem cell specification niche.
Exp Hematol. 2024 Aug;136:104280. doi: 10.1016/j.exphem.2024.104280. Epub 2024 Jul 14.

本文引用的文献

2
Mesp2 and Tbx6 cooperatively create periodic patterns coupled with the clock machinery during mouse somitogenesis.
Development. 2008 Aug;135(15):2555-62. doi: 10.1242/dev.019877. Epub 2008 Jun 25.
3
Control of segment number in vertebrate embryos.
Nature. 2008 Jul 17;454(7202):335-9. doi: 10.1038/nature07020. Epub 2008 Jun 18.
4
Retinoic acid in development: towards an integrated view.
Nat Rev Genet. 2008 Jul;9(7):541-53. doi: 10.1038/nrg2340. Epub 2008 Jun 10.
5
Localised axial progenitor cell populations in the avian tail bud are not committed to a posterior Hox identity.
Development. 2008 Jul;135(13):2289-99. doi: 10.1242/dev.022020. Epub 2008 May 28.
6
Segmental patterning of the vertebrate embryonic axis.
Nat Rev Genet. 2008 May;9(5):370-82. doi: 10.1038/nrg2320.
7
A beta-catenin gradient links the clock and wavefront systems in mouse embryo segmentation.
Nat Cell Biol. 2008 Feb;10(2):186-93. doi: 10.1038/ncb1679. Epub 2007 Dec 23.
8
Deriving structure from evolution: metazoan segmentation.
Mol Syst Biol. 2007;3:154. doi: 10.1038/msb4100192. Epub 2007 Dec 18.
9
Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism.
Nature. 2007 Nov 29;450(7170):717-20. doi: 10.1038/nature06347.
10
Wnt3a/beta-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation.
Development. 2008 Jan;135(1):85-94. doi: 10.1242/dev.009266. Epub 2007 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验