Suppr超能文献

保持准确和强大:一个增强的细胞核分析框架。

Keep it accurate and robust: An enhanced nuclei analysis framework.

作者信息

Zhang Wenhua, Yang Sen, Luo Meiwei, He Chuan, Li Yuchen, Zhang Jun, Wang Xiyue, Wang Fang

机构信息

Institute of Artificial Intelligence, Shanghai University, Shanghai 200444, China.

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305 USA.

出版信息

Comput Struct Biotechnol J. 2024 Nov 13;24:699-710. doi: 10.1016/j.csbj.2024.10.046. eCollection 2024 Dec.

Abstract

Accurate segmentation and classification of nuclei in histology images is critical but challenging due to nuclei heterogeneity, staining variations, and tissue complexity. Existing methods often struggle with limited dataset variability, with patches extracted from similar whole slide images (WSI), making models prone to falling into local optima. Here we propose a new framework to address this limitation and enable robust nuclear analysis. Our method leverages dual-level ensemble modeling to overcome issues stemming from limited dataset variation. Intra-ensembling applies diverse transformations to individual samples, while inter-ensembling combines networks of different scales. We also introduce enhancements to the HoVer-Net architecture, including updated encoders, nested dense decoding and model regularization strategy. We achieve state-of-the-art results on public benchmarks, including 1st place for nuclear composition prediction and 3rd place for segmentation/classification in the 2022 Colon Nuclei Identification and Counting (CoNIC) Challenge. This success validates our approach for accurate histological nuclei analysis. Extensive experiments and ablation studies provide insights into optimal network design choices and training techniques. In conclusion, this work proposes an improved framework advancing the state-of-the-art in nuclei analysis. We will release our code and models to serve as a toolkit for the community.

摘要

在组织学图像中,细胞核的准确分割和分类至关重要,但由于细胞核的异质性、染色变化和组织复杂性,这一过程具有挑战性。现有方法常常因数据集变异性有限而陷入困境,这些方法所提取的图像块来自相似的全切片图像(WSI),这使得模型容易陷入局部最优。在此,我们提出一种新框架来解决这一局限性,并实现稳健的细胞核分析。我们的方法利用双级集成建模来克服因数据集变化有限而产生的问题。内部集成对单个样本应用多种变换,而外部集成则结合不同尺度的网络。我们还对HoVer-Net架构进行了改进,包括更新编码器、嵌套密集解码和模型正则化策略。我们在公开基准测试中取得了领先成果,在2022年结肠细胞核识别与计数(CoNIC)挑战赛中,在细胞核成分预测方面获得第一名,在分割/分类方面获得第三名。这一成功验证了我们用于准确组织学细胞核分析的方法。广泛的实验和消融研究为最佳网络设计选择和训练技术提供了见解。总之,这项工作提出了一个改进框架,推动了细胞核分析领域的技术发展。我们将发布代码和模型,作为社区的一个工具包。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b99c/11621583/9e5d8600985e/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验