Suppr超能文献

具有预训练骨干网络的注意力UNet架构用于多类心脏磁共振图像分割。

Attention-UNet architectures with pretrained backbones for multi-class cardiac MR image segmentation.

作者信息

Das Niharika, Das Sujoy

机构信息

Department of Mathematics & Computer Application, Maulana Azad National Institute of Technology, India.

Department of Mathematics & Computer Application, Maulana Azad National Institute of Technology, India.

出版信息

Curr Probl Cardiol. 2024 Jan;49(1 Pt C):102129. doi: 10.1016/j.cpcardiol.2023.102129. Epub 2023 Oct 20.

Abstract

Segmentation architectures based on deep learning proficient extraordinary results in medical imaging technologies. Computed tomography (CT) images and Magnetic Resonance Imaging (MRI) in diagnosis and treatment are increasing and significantly support the diagnostic process by removing the bottlenecks of manual segmentation. Cardiac Magnetic Resonance Imaging (CMRI) is a state-of-the-art imaging technique used to acquire vital heart measurements and has received extensive attention from researchers for automatic segmentation. Deep learning methods offer high-precision segmentation but still pose several difficulties, such as pixel homogeneity in nearby organs. The motivated study using the attention mechanism approach was introduced for medical images for automated algorithms. The experiment focuses on observing the impact of the attention mechanism with and without pretrained backbone networks on the UNet model. For the same, three networks are considered: Attention-UNet, Attention-UNet with resnet50 pretrained backbone and Attention-UNet with densenet121 pretrained backbone. The experiments are performed on the ACDC Challenge 2017 dataset. The performance is evaluated by conducting a comparative analysis based on the Dice Coefficient, IoU Coefficient, and cross-entropy loss calculations. The Attention-UNet, Attention-UNet with resnet50 pretrained backbone, and Attention-UNet with densenet121 pretrained backbone networks obtained Dice Coefficients of 0.9889, 0.9720, and 0.9801, respectively, along with corresponding IoU scores of 0.9781, 0.9457, and 0.9612. Results compared with the state-of-the-art methods indicate that the methods are on par with, or even superior in terms of both the Dice coefficient and Intersection-over-union.

摘要

基于深度学习的分割架构在医学成像技术中取得了非凡的成果。计算机断层扫描(CT)图像和磁共振成像(MRI)在诊断和治疗中的应用日益增加,并通过消除手动分割的瓶颈显著支持诊断过程。心脏磁共振成像(CMRI)是一种用于获取重要心脏测量数据的先进成像技术,在自动分割方面受到了研究人员的广泛关注。深度学习方法提供了高精度的分割,但仍然存在一些困难,例如附近器官的像素同质性。针对医学图像的自动化算法引入了使用注意力机制方法的动机研究。该实验重点观察有无预训练主干网络的注意力机制对UNet模型的影响。为此,考虑了三个网络:注意力UNet、带有预训练resnet50主干的注意力UNet和带有预训练densenet121主干的注意力UNet。实验在ACDC挑战2017数据集上进行。通过基于骰子系数、交并比系数和交叉熵损失计算进行比较分析来评估性能。注意力UNet、带有预训练resnet50主干的注意力UNet和带有预训练densenet121主干的注意力UNet网络分别获得了0.9889、0.9720和0.9801的骰子系数,以及相应的0.9781、0.9457和0.9612的交并比分数。与现有方法的结果比较表明,这些方法在骰子系数和交并比方面与现有方法相当,甚至更优。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验