Suppr超能文献

基于深度学习的有限标签医学图像分割。

Deep learning-based medical image segmentation with limited labels.

机构信息

Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America.

School of Software Engineering, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China.

出版信息

Phys Med Biol. 2020 Nov 20;65(23). doi: 10.1088/1361-6560/abc363.

Abstract

Deep learning (DL)-based auto-segmentation has the potential for accurate organ delineation in radiotherapy applications but requires large amounts of clean labeled data to train a robust model. However, annotating medical images is extremely time-consuming and requires clinical expertise, especially for segmentation that demands voxel-wise labels. On the other hand, medical images without annotations are abundant and highly accessible. To alleviate the influence of the limited number of clean labels, we propose a weakly supervised DL training approach using deformable image registration (DIR)-based annotations, leveraging the abundance of unlabeled data. We generate pseudo-contours by utilizing DIR to propagate atlas contours onto abundant unlabeled images and train a robust DL-based segmentation model. With 10 labeled TCIA dataset and 50 unlabeled CT scans from our institution, our model achieved Dice similarity coefficient of 87.9%, 73.4%, 73.4%, 63.2% and 61.0% on mandible, left & right parotid glands and left & right submandibular glands of TCIA test set and competitive performance on our institutional clinical dataset and a third party (PDDCA) dataset. Experimental results demonstrated the proposed method outperformed traditional multi-atlas DIR methods and fully supervised limited data training and is promising for DL-based medical image segmentation application with limited annotated data.

摘要

深度学习(DL)自动分割技术在放射治疗应用中具有精确器官勾画的潜力,但需要大量干净的标注数据来训练稳健的模型。然而,医学图像的标注非常耗时,需要临床专业知识,特别是对于需要体素级标签的分割。另一方面,大量未标注的医学图像易于获取。为了减轻有限数量的干净标签的影响,我们提出了一种使用基于可变形图像配准(DIR)的标注的弱监督 DL 训练方法,利用丰富的未标注数据。我们通过利用 DIR 将图谱轮廓传播到大量未标注的图像上来生成伪轮廓,并训练稳健的基于 DL 的分割模型。在使用 10 个 TCIA 数据集的标注和来自我们机构的 50 个未标注 CT 扫描的情况下,我们的模型在 TCIA 测试集的下颌骨、左右腮腺和左右颌下腺上的 Dice 相似系数分别达到了 87.9%、73.4%、73.4%、63.2%和 61.0%,在我们机构的临床数据集和第三方(PDDCA)数据集上也具有竞争力。实验结果表明,该方法优于传统的多图谱 DIR 方法和全监督有限数据训练,对于基于 DL 的医学图像分割应用具有很大的应用潜力,在这种应用中,可用的标注数据非常有限。

相似文献

引用本文的文献

本文引用的文献

1
DeepAtlas: Joint Semi-Supervised Learning of Image Registration and Segmentation.深度图谱:图像配准与分割的联合半监督学习
Med Image Comput Comput Assist Interv. 2019 Oct;11765:420-429. doi: 10.1007/978-3-030-32245-8_47. Epub 2019 Oct 10.
6
Artificial intelligence in radiology.人工智能在放射学中的应用。
Nat Rev Cancer. 2018 Aug;18(8):500-510. doi: 10.1038/s41568-018-0016-5.
7
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
10
Multi-atlas segmentation of biomedical images: A survey.生物医学图像的多图谱分割:一项综述。
Med Image Anal. 2015 Aug;24(1):205-219. doi: 10.1016/j.media.2015.06.012. Epub 2015 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验