Suppr超能文献

基于深度学习分类的黑色素瘤检测

Melanoma Detection Using Deep Learning-Based Classifications.

作者信息

Alwakid Ghadah, Gouda Walaa, Humayun Mamoona, Sama Najm Us

机构信息

Department of Computer Science, College of Computer and Information Sciences, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia.

Department of Computer Engineering and Networks, College of Computer and Information Sciences, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia.

出版信息

Healthcare (Basel). 2022 Dec 8;10(12):2481. doi: 10.3390/healthcare10122481.

Abstract

One of the most prevalent cancers worldwide is skin cancer, and it is becoming more common as the population ages. As a general rule, the earlier skin cancer can be diagnosed, the better. As a result of the success of deep learning (DL) algorithms in other industries, there has been a substantial increase in automated diagnosis systems in healthcare. This work proposes DL as a method for extracting a lesion zone with precision. First, the image is enhanced using Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN) to improve the image's quality. Then, segmentation is used to segment Regions of Interest (ROI) from the full image. We employed data augmentation to rectify the data disparity. The image is then analyzed with a convolutional neural network (CNN) and a modified version of Resnet-50 to classify skin lesions. This analysis utilized an unequal sample of seven kinds of skin cancer from the HAM10000 dataset. With an accuracy of 0.86, a precision of 0.84, a recall of 0.86, and an F-score of 0.86, the proposed CNN-based Model outperformed the earlier study's results by a significant margin. The study culminates with an improved automated method for diagnosing skin cancer that benefits medical professionals and patients.

摘要

皮肤癌是全球最常见的癌症之一,并且随着人口老龄化,它正变得越来越普遍。一般来说,皮肤癌越早被诊断出来越好。由于深度学习(DL)算法在其他行业取得成功,医疗保健领域的自动诊断系统大幅增加。这项工作提出将深度学习作为一种精确提取病变区域的方法。首先,使用增强型超分辨率生成对抗网络(ESRGAN)增强图像,以提高图像质量。然后,使用分割从完整图像中分割出感兴趣区域(ROI)。我们采用数据增强来纠正数据差异。然后用卷积神经网络(CNN)和Resnet - 50的改进版本对图像进行分析,以对皮肤病变进行分类。该分析使用了来自HAM10000数据集的七种皮肤癌的不均衡样本。所提出的基于CNN的模型准确率为0.86,精确率为0.84,召回率为0.86,F值为0.86,大大优于早期研究的结果。该研究最终得出一种改进的皮肤癌自动诊断方法,这对医学专业人员和患者都有益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0d6/9777935/844a63e9e8e9/healthcare-10-02481-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验