Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
Int J Mol Sci. 2022 Dec 11;23(24):15702. doi: 10.3390/ijms232415702.
Fluid shear stress (FSS) facilitates bone remodeling by regulating osteogenic differentiation, and extracellular matrix maturation and mineralization. However, the underlying molecular mechanisms of how mechanical stimuli from FSS are converted into osteogenesis remain largely unexplored. Here, we exposed MC3T3-E1 cells to FSS with different intensities (1 h FSS with 0, 5, 10, and 20 dyn/cm intensities) and treatment durations (10 dyn/cm FSS with 0, 0.5, 1, 2 and 4 h treatment). The results demonstrate that the 1 h of 10 dyn/cm FSS treatment greatly upregulated the expression of osteogenic markers (Runx2, ALP, Col I), accompanied by AnxA6 activation. The genetic ablation of AnxA6 suppressed the autophagic process, demonstrating lowered autophagy markers (Beclin1, ATG5, ATG7, LC3) and decreased autophagosome formation, and strongly reduced osteogenic differentiation induced by FSS. Furthermore, the addition of autophagic activator rapamycin to AnxA6 knockdown cells stimulated autophagy process, and coincided with more expressions of osteogenic proteins ALP and Col I under both static and FSS conditions. In conclusion, the findings in this study reveal a hitherto unidentified relationship between FSS-induced osteogenic differentiation and autophagy, and point to AnxA6 as a key mediator of autophagy in response to FSS, which may provide a new target for the treatment of osteoporosis and other diseases.
流体切应力(FSS)通过调节成骨细胞分化、细胞外基质成熟和矿化来促进骨重塑。然而,FSS 机械刺激如何转化为成骨作用的潜在分子机制在很大程度上仍未被探索。在这里,我们用不同强度(0、5、10 和 20 dyn/cm 的 1 h FSS)和处理时间(0、0.5、1、2 和 4 h 的 10 dyn/cm FSS)的 FSS 处理 MC3T3-E1 细胞。结果表明,1 h 的 10 dyn/cm FSS 处理极大地上调了成骨标志物(Runx2、ALP、Col I)的表达,同时激活了 AnxA6。AnxA6 的基因敲除抑制了自噬过程,表现为自噬标志物(Beclin1、ATG5、ATG7、LC3)降低和自噬体形成减少,并强烈抑制了 FSS 诱导的成骨分化。此外,向 AnxA6 敲低细胞中添加自噬激活剂雷帕霉素刺激了自噬过程,并与静态和 FSS 条件下更多的成骨蛋白 ALP 和 Col I 的表达相一致。总之,本研究的结果揭示了 FSS 诱导的成骨分化与自噬之间的一种以前未知的关系,并指出 AnxA6 是自噬对 FSS 反应的关键介质,这可能为骨质疏松症和其他疾病的治疗提供新的靶点。