Suppr超能文献

使用微流控载细胞微凝胶构建软骨和骨微组织的组合策略。

Combinatorial strategy for engineering cartilage and bone microtissues using microfluidic cell-laden microgels.

作者信息

Kim Suntae, Li Siyuan, Baek Seung Yeop, Cha Chaenyung, Lee Sang Jin

机构信息

Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America.

Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.

出版信息

Biofabrication. 2025 Apr 22;17(3). doi: 10.1088/1758-5090/adc840.

Abstract

Osteochondral defects (OCD) refer to localized injuries affecting both the avascular cartilage and subchondral bone. Current treatments, such as transplantation or microfracture surgery, are hindered by limitations like donor availability and the formation of small, rigid fibrocartilage. Tissue engineering presents a promising alternative, yet challenges arise from limited oxygen and nutrient supply when fabricating human-scale tissue constructs. To address this, we propose assembling engineered micro-scale tissue constructs as building blocks for human-scale constructs. In this study, we aimed to develop bone and cartilage microtissues as building blocks for osteochondral tissue engineering. We fabricated placental stem cell (PSC)-laden microgels, inducing differentiation into osteogenic and chondrogenic microtissues. Utilizing a microfluidics chip platform, these microgels comprised a cell-laden core containing bone-specific and cartilage-specific growth factor-mimetic peptides, respectively, along with an acellular hydrogel shell. Additionally, we investigated the effect of culture conditions on microtissue formation, testing dynamic and static conditions. Results revealed over 85% cell viability within the microgels over 7 d of continuous growth. Under static conditions, approximately 60% of cells migrated from the core to the periphery, while dynamic conditions exhibited evenly distributed cells. Within 4 weeks of differentiation, growth factor-mimetic peptides accelerated PSC differentiation into bone and cartilage microtissues. These findings suggest the potential clinical applicability of our approach in treating OCD.

摘要

骨软骨缺损(OCD)是指影响无血管软骨和软骨下骨的局部损伤。目前的治疗方法,如移植或微骨折手术,受到供体可用性和小而硬的纤维软骨形成等限制。组织工程提供了一种有前景的替代方案,但在制造人体规模的组织构建体时,由于氧气和营养供应有限而产生了挑战。为了解决这个问题,我们建议将工程化的微尺度组织构建体组装成人体规模构建体的构建模块。在本研究中,我们旨在开发骨和软骨微组织作为骨软骨组织工程的构建模块。我们制备了负载胎盘干细胞(PSC)的微凝胶,诱导其分化为成骨和成软骨微组织。利用微流控芯片平台,这些微凝胶包括一个分别含有骨特异性和软骨特异性生长因子模拟肽的细胞负载核心,以及一个无细胞水凝胶外壳。此外,我们研究了培养条件对微组织形成的影响,测试了动态和静态条件。结果显示,在连续生长7天的过程中,微凝胶内细胞活力超过85%。在静态条件下,约60%的细胞从核心迁移到周边,而动态条件下细胞分布均匀。在分化的4周内,生长因子模拟肽加速了PSC向骨和软骨微组织的分化。这些发现表明我们的方法在治疗OCD方面具有潜在的临床应用价值。

相似文献

6
Cell-laden hydrogels for osteochondral and cartilage tissue engineering.用于骨软骨和软骨组织工程的载细胞水凝胶。
Acta Biomater. 2017 Jul 15;57:1-25. doi: 10.1016/j.actbio.2017.01.036. Epub 2017 Jan 11.

本文引用的文献

1
Advancements in Cartilage Tissue Engineering: A Focused Review.软骨组织工程的进展:一篇综述
J Biomed Mater Res B Appl Biomater. 2025 Jan;113(1):e35520. doi: 10.1002/jbm.b.35520.
2
Advancements in the treatment of osteochondral lesions of the talus.距骨骨软骨损伤的治疗进展。
J Orthop Surg Res. 2024 Dec 6;19(1):827. doi: 10.1186/s13018-024-05314-6.
5
3D Bioprinting Strategies for Articular Cartilage Tissue Engineering.3D 生物打印在关节软骨组织工程中的策略。
Ann Biomed Eng. 2024 Jul;52(7):1883-1893. doi: 10.1007/s10439-023-03236-8. Epub 2023 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验