Suppr超能文献

钙共振调谐低频磁场对. 的影响。

Influence of Calcium Resonance-Tuned Low-Frequency Magnetic Fields on .

机构信息

Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia.

出版信息

Int J Mol Sci. 2022 Dec 11;23(24):15727. doi: 10.3390/ijms232415727.

Abstract

A biophysical model for calculating the effective parameters of low-frequency magnetic fields was developed by Lednev based on summarized empirical data. According to this model, calcium ions as enzyme cofactors can be the primary target of low-frequency magnetic fields with different parameters tuned to calcium resonance. However, the effects of calcium-resonant combinations of static and alternating magnetic fields that correspond to Lednev's model and differ by order in frequency and intensity were not studied. It does not allow for confidently discussing the primary targets of low-frequency magnetic fields in terms of the magnetic influence on ions-enzyme cofactors. To clarify this issue, we examined the response of freshwater crustaceans to the impact of combinations of magnetic fields targeted to calcium ions in enzymes according to Lednev's model that differ in order of magnitude. Life-history traits and biochemical parameters were evaluated. Exposure of daphnids to both combinations of magnetic fields led to a long-term delay of the first brood release, an increase in the brood size, a decrease in the number of broods, and the period between broods. The amylolytic activity, proteolytic activity, and sucrase activity significantly decreased in whole-body homogenates of crustaceans in response to both combinations of magnetic fields. The similarity in the sets of revealed effects assumes that different magnetic fields tuned to calcium ions in biomolecules can affect the same primary molecular target. The results suggest that the low-frequency magnetic fields with parameters corresponding to Lednev's model of interaction between biological molecules and ions can remain effective with a significant decrease in the static magnetic background.

摘要

列德涅夫基于总结的经验数据开发了一种用于计算低频磁场有效参数的生物物理模型。根据该模型,作为酶辅助因子的钙离子可以成为低频磁场的主要靶标,而不同参数的低频磁场可以调谐到钙离子共振。然而,列德涅夫模型所对应的、频率和强度顺序不同的静态和交变磁场的钙共振组合的影响尚未得到研究。这使得我们无法有把握地根据磁场对离子-酶辅助因子的影响来讨论低频磁场的主要靶标。为了澄清这个问题,我们根据列德涅夫的模型,研究了针对酶中钙离子的磁场组合对淡水甲壳类动物的影响,这些磁场组合在数量级上有所不同。评估了甲壳类动物的生活史特征和生化参数。暴露于两种磁场组合下的水蚤都会导致首次产卵的长期延迟、产卵量增加、产卵次数减少以及产卵间隔延长。在甲壳类动物的整体匀浆中,淀粉酶、蛋白酶和蔗糖酶活性对两种磁场组合的反应均显著降低。所揭示的效应的相似性表明,调谐到生物分子中钙离子的不同磁场可以影响相同的主要分子靶标。这些结果表明,与列德涅夫模型所假设的生物分子与离子相互作用的参数对应的低频磁场在静态磁场背景显著降低的情况下仍能保持有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4180/9779586/6e827eb7d386/ijms-23-15727-g001.jpg

相似文献

1
Influence of Calcium Resonance-Tuned Low-Frequency Magnetic Fields on .
Int J Mol Sci. 2022 Dec 11;23(24):15727. doi: 10.3390/ijms232415727.
2
The response of Daphnia magna Straus to the long-term action of low-frequency magnetic fields.
Ecotoxicol Environ Saf. 2013 Oct;96:213-9. doi: 10.1016/j.ecoenv.2013.06.012. Epub 2013 Jul 11.
3
The effects of weak extremely low frequency magnetic fields on calcium/calmodulin interactions.
Biophys J. 1996 Jun;70(6):2915-23. doi: 10.1016/S0006-3495(96)79861-2.
4
Criticism of Lednev's mechanism for the influence of weak magnetic fields on biological systems.
Bioelectromagnetics. 1992;13(3):231-5. doi: 10.1002/bem.2250130307.
5
Dynamic properties of Lednev's parametric resonance mechanism.
Bioelectromagnetics. 1996;17(1):58-70. doi: 10.1002/(SICI)1521-186X(1996)17:1<58::AID-BEM8>3.0.CO;2-5.
6
The response of Daphnia magna Straus to long-term exposure to simulated geomagnetic storms.
Life Sci Space Res (Amst). 2019 May;21:83-88. doi: 10.1016/j.lssr.2019.04.004. Epub 2019 Apr 25.
7
The response of European Daphnia magna Straus and Australian Daphnia carinata King to changes in geomagnetic field.
Electromagn Biol Med. 2013 Mar;32(1):30-9. doi: 10.3109/15368378.2012.700291. Epub 2013 Jan 15.
8
Assessment of chronic effects of tebuconazole on survival, reproduction and growth of Daphnia magna after different exposure times.
Ecotoxicol Environ Saf. 2016 Feb;124:10-17. doi: 10.1016/j.ecoenv.2015.09.034. Epub 2015 Oct 13.
9
[Lednev's model: theory and experiment].
Biofizika. 2010 Jul-Aug;55(4):750-66.

引用本文的文献

1
Biological Effects of Magnetic Storms and ELF Magnetic Fields.
Biology (Basel). 2023 Dec 8;12(12):1506. doi: 10.3390/biology12121506.

本文引用的文献

1
Effect of weak alternating magnetic fields on planarian regeneration.
Biochem Biophys Res Commun. 2022 Feb 12;592:7-12. doi: 10.1016/j.bbrc.2021.12.096. Epub 2021 Dec 28.
3
Low-Frequency Magnetic Fields in Cars and Office Premises and the Geomagnetic Field Variations.
Bioelectromagnetics. 2020 Jul;41(5):360-368. doi: 10.1002/bem.22269. Epub 2020 May 20.
4
The Influence of Changes in Magnetic Variations and Light-Dark Cycle on Life-History Traits of Daphnia magna.
Bioelectromagnetics. 2020 Jul;41(5):338-347. doi: 10.1002/bem.22264. Epub 2020 Apr 15.
6
Effects of combined magnetic fields on bacteria Rhodospirillum rubrum VKM B-1621.
Bioelectromagnetics. 2018 Sep;39(6):485-490. doi: 10.1002/bem.22130. Epub 2018 May 24.
7
Magnetic Fields and Reactive Oxygen Species.
Int J Mol Sci. 2017 Oct 18;18(10):2175. doi: 10.3390/ijms18102175.
8
A physical mechanism of magnetoreception: Extension and analysis.
Bioelectromagnetics. 2017 Jan;38(1):41-52. doi: 10.1002/bem.22011. Epub 2016 Nov 8.
9
Drosophila melanogaster clip-domain serine proteases: Structure, function and regulation.
Biochimie. 2016 Mar;122:255-69. doi: 10.1016/j.biochi.2015.10.007. Epub 2015 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验