Pellegrino Paolo, Farella Isabella, Cascione Mariafrancesca, De Matteis Valeria, Bramanti Alessandro Paolo, Della Torre Antonio, Quaranta Fabio, Rinaldi Rosaria
Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Monteroni, 73100 Lecce, Italy.
Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy.
Nanomaterials (Basel). 2022 Dec 11;12(24):4421. doi: 10.3390/nano12244421.
In recent years, Atomic Force Microscope (AFM)-based nanolithography techniques have emerged as a very powerful approach for the machining of countless types of nanostructures. However, the conventional AFM-based nanolithography methods suffer from low efficiency, low rate of patterning, and high complexity of execution. In this frame, we first developed an easy and effective nanopatterning technique, termed Pulse-Atomic Force Lithography (P-AFL), with which we were able to pattern 2.5D nanogrooves on a thin polymer layer. Indeed, for the first time, we patterned nanogrooves with either constant or varying depth profiles, with sub-nanometre resolution, high accuracy, and reproducibility. In this paper, we present the results on the investigation of the effects of P-AFL parameters on 2.5D nanostructures' morphology. We considered three main P-AFL parameters, i.e., the pulse's amplitude (setpoint), the pulses' width, and the distance between the following indentations (step), and we patterned arrays of grooves after a precise and well-established variation of the aforementioned parameters. Optimizing the nanolithography process, in terms of patterning time and nanostructures quality, we realized unconventional shape nanostructures with high accuracy and fidelity. Finally, a scanning electron microscope was used to confirm that P-AFL does not induce any damage on AFM tips used to pattern the nanostructures.
近年来,基于原子力显微镜(AFM)的纳米光刻技术已成为一种用于加工无数类型纳米结构的非常强大的方法。然而,传统的基于AFM的纳米光刻方法存在效率低、图案化速率低和执行复杂度高的问题。在此框架下,我们首先开发了一种简单有效的纳米图案化技术,称为脉冲原子力光刻(P-AFL),利用该技术我们能够在薄聚合物层上形成2.5D纳米凹槽。事实上,我们首次以亚纳米分辨率、高精度和可重复性形成了具有恒定或变化深度轮廓的纳米凹槽。在本文中,我们展示了关于P-AFL参数对2.5D纳米结构形态影响的研究结果。我们考虑了三个主要的P-AFL参数,即脉冲幅度(设定点)、脉冲宽度和后续压痕之间的距离(步长),并在对上述参数进行精确且完善的变化后形成了凹槽阵列。在图案化时间和纳米结构质量方面优化纳米光刻工艺,我们实现了具有高精度和保真度的非常规形状纳米结构。最后,使用扫描电子显微镜确认P-AFL不会对用于图案化纳米结构的AFM针尖造成任何损伤。