文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于改进的 Yolov5s 的头盔佩戴状态检测。

Helmet Wearing State Detection Based on Improved Yolov5s.

机构信息

School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.

School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China.

出版信息

Sensors (Basel). 2022 Dec 14;22(24):9843. doi: 10.3390/s22249843.


DOI:10.3390/s22249843
PMID:36560211
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9786055/
Abstract

At many construction sites, whether to wear a helmet is directly related to the safety of the workers. Therefore, the detection of helmet use has become a crucial monitoring tool for construction safety. However, most of the current helmet wearing detection algorithms are only dedicated to distinguishing pedestrians who wear helmets from those who do not. In order to further enrich the detection in construction scenes, this paper builds a dataset with six cases: not wearing a helmet, wearing a helmet, just wearing a hat, having a helmet, but not wearing it, wearing a helmet correctly, and wearing a helmet without wearing the chin strap. On this basis, this paper proposes a practical algorithm for detecting helmet wearing states based on the improved YOLOv5s algorithm. Firstly, according to the characteristics of the label of the dataset constructed by us, the K-means method is used to redesign the size of the prior box and match it to the corresponding feature layer to increase the accuracy of the feature extraction of the model; secondly, an additional layer is added to the algorithm to improve the ability of the model to recognize small targets; finally, the attention mechanism is introduced in the algorithm, and the CIOU_Loss function in the YOLOv5 method is replaced by the EIOU_Loss function. The experimental results indicate that the improved algorithm is more accurate than the original YOLOv5s algorithm. In addition, the finer classification also significantly enhances the detection performance of the model.

摘要

在许多建筑工地,工人是否戴安全帽直接关系到他们的安全。因此,检测安全帽的佩戴情况已成为建筑安全的重要监控手段。然而,目前大多数的安全帽佩戴检测算法仅专注于区分戴安全帽的行人和不戴安全帽的行人。为了进一步丰富施工现场的检测,本文构建了一个包含六个案例的数据集:未戴安全帽、戴安全帽、仅戴帽子、戴了安全帽但未系好、正确戴了安全帽、未系好安全帽下颚带。在此基础上,本文提出了一种基于改进的 YOLOv5s 算法的实用的安全帽佩戴状态检测算法。首先,根据我们构建的数据集标签的特点,使用 K-means 方法重新设计先验框的大小,并将其与相应的特征层匹配,以提高模型特征提取的准确性;其次,在算法中添加一个额外的层,以提高模型识别小目标的能力;最后,在算法中引入注意力机制,并将 YOLOv5 方法中的 CIOU_Loss 函数替换为 EIOU_Loss 函数。实验结果表明,改进后的算法比原始的 YOLOv5s 算法更准确。此外,更精细的分类也显著提高了模型的检测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c1/9786055/8130607d5996/sensors-22-09843-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c1/9786055/6e2b68bd930d/sensors-22-09843-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c1/9786055/944fb5807ed6/sensors-22-09843-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c1/9786055/c1a8e07628c5/sensors-22-09843-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c1/9786055/8846e2991d1f/sensors-22-09843-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c1/9786055/be00e1a36a48/sensors-22-09843-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c1/9786055/6fa7b0568643/sensors-22-09843-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c1/9786055/22ad544fcd8d/sensors-22-09843-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c1/9786055/7da200b944bd/sensors-22-09843-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c1/9786055/40fcfd628cd9/sensors-22-09843-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c1/9786055/8130607d5996/sensors-22-09843-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c1/9786055/6e2b68bd930d/sensors-22-09843-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c1/9786055/944fb5807ed6/sensors-22-09843-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c1/9786055/c1a8e07628c5/sensors-22-09843-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c1/9786055/8846e2991d1f/sensors-22-09843-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c1/9786055/be00e1a36a48/sensors-22-09843-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c1/9786055/6fa7b0568643/sensors-22-09843-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c1/9786055/22ad544fcd8d/sensors-22-09843-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c1/9786055/7da200b944bd/sensors-22-09843-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c1/9786055/40fcfd628cd9/sensors-22-09843-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c1/9786055/8130607d5996/sensors-22-09843-g010.jpg

相似文献

[1]
Helmet Wearing State Detection Based on Improved Yolov5s.

Sensors (Basel). 2022-12-14

[2]
Helmet-Wearing Tracking Detection Based on StrongSORT.

Sensors (Basel). 2023-2-3

[3]
Research on Safety Helmet Detection Algorithm Based on Improved YOLOv5s.

Sensors (Basel). 2023-6-22

[4]
Research on helmet wearing detection method based on deep learning.

Sci Rep. 2024-3-25

[5]
Research on application of helmet wearing detection improved by YOLOv4 algorithm.

Math Biosci Eng. 2023-3-6

[6]
Workshop Safety Helmet Wearing Detection Model Based on SCM-YOLO.

Sensors (Basel). 2022-9-5

[7]
Detection of safety helmet and mask wearing using improved YOLOv5s.

Sci Rep. 2023-12-5

[8]
An improved YOLOv8 safety helmet wearing detection network.

Sci Rep. 2024-7-30

[9]
Cycling related traumatic brain injury requiring intensive care: association with non-helmet wearing in young people.

Injury. 2019-1

[10]
Multi-Scale Safety Helmet Detection Based on RSSE-YOLOv3.

Sensors (Basel). 2022-8-13

引用本文的文献

[1]
High-Precision and Lightweight Model for Rapid Safety Helmet Detection.

Sensors (Basel). 2024-10-30

[2]
An improved YOLOv8 safety helmet wearing detection network.

Sci Rep. 2024-7-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索