文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的头盔佩戴检测方法研究。

Research on helmet wearing detection method based on deep learning.

机构信息

School of Artificial Intelligence and Big Data, Hulunbeier University, Inner Mongolia, 021008, Hailar, China.

Information Science and Engineering School, Northeastern University, Shenyang, 110004, China.

出版信息

Sci Rep. 2024 Mar 25;14(1):7010. doi: 10.1038/s41598-024-57433-z.


DOI:10.1038/s41598-024-57433-z
PMID:38528034
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10963364/
Abstract

The vigorous development of the construction industry has also brought unprecedented safety risks. The wearing of safety helmets at the construction site can effectively reduce casualties. As a result, this paper suggests employing a deep learning-based approach for the real-time detection of safety helmet usage among construction workers. Based on the selected YOLOv5s network through experiments, this paper analyzes its training results. Considering its poor detection effect on small objects and occluded objects. Therefore, multiple attention mechanisms are used to improve the YOLOv5s network, the feature pyramid network is improved into a BiFPN bidirectional feature pyramid network, and the post-processing method NMS is improved into Soft-NMS. Based on the above-improved method, the loss function is improved to enhance the convergence speed of the model and improve the detection speed. We propose a network model called BiFEL-YOLOv5s, which combines the BiFPN network and Focal-EIoU Loss to improve YOLOv5s. The average precision of the model is increased by 0.9% the recall rate is increased by 2.8%, and the detection speed of the model does not decrease too much. It is better suited for real-time safety helmet object detection, addressing the requirements of helmet detection across various work scenarios.

摘要

建筑行业的蓬勃发展也带来了前所未有的安全风险。施工现场佩戴安全帽可以有效减少人员伤亡。因此,本文建议采用基于深度学习的方法实时检测建筑工人佩戴安全帽的情况。本文通过实验选择了 YOLOv5s 网络,并对其训练结果进行了分析。考虑到其对小目标和遮挡目标的检测效果较差,因此使用了多种注意力机制对 YOLOv5s 网络进行改进,将特征金字塔网络改进为 BiFPN 双向特征金字塔网络,并将后处理方法 NMS 改进为 Soft-NMS。基于上述改进方法,改进损失函数以增强模型的收敛速度并提高检测速度。我们提出了一种名为 BiFEL-YOLOv5s 的网络模型,该模型结合了 BiFPN 网络和 Focal-EIoU Loss 来改进 YOLOv5s。模型的平均精度提高了 0.9%,召回率提高了 2.8%,并且模型的检测速度没有太大下降,更适合实时安全帽目标检测,满足了各种工作场景下的头盔检测要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10963364/d87b2abf5f44/41598_2024_57433_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10963364/5638521be5bb/41598_2024_57433_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10963364/37a8849ac29b/41598_2024_57433_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10963364/c8ec954bded4/41598_2024_57433_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10963364/6b0adb8fca5b/41598_2024_57433_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10963364/df2b8c386155/41598_2024_57433_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10963364/0f7e1796e8bb/41598_2024_57433_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10963364/feb61c3609d8/41598_2024_57433_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10963364/cbccb07d0ef1/41598_2024_57433_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10963364/da7bfd712cdb/41598_2024_57433_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10963364/d87b2abf5f44/41598_2024_57433_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10963364/5638521be5bb/41598_2024_57433_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10963364/37a8849ac29b/41598_2024_57433_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10963364/c8ec954bded4/41598_2024_57433_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10963364/6b0adb8fca5b/41598_2024_57433_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10963364/df2b8c386155/41598_2024_57433_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10963364/0f7e1796e8bb/41598_2024_57433_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10963364/feb61c3609d8/41598_2024_57433_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10963364/cbccb07d0ef1/41598_2024_57433_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10963364/da7bfd712cdb/41598_2024_57433_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a6f/10963364/d87b2abf5f44/41598_2024_57433_Fig10_HTML.jpg

相似文献

[1]
Research on helmet wearing detection method based on deep learning.

Sci Rep. 2024-3-25

[2]
Helmet-Wearing Tracking Detection Based on StrongSORT.

Sensors (Basel). 2023-2-3

[3]
Research on Safety Helmet Detection Algorithm Based on Improved YOLOv5s.

Sensors (Basel). 2023-6-22

[4]
Helmet Wearing State Detection Based on Improved Yolov5s.

Sensors (Basel). 2022-12-14

[5]
Research on improved algorithm for helmet detection based on YOLOv5.

Sci Rep. 2023-10-23

[6]
An improved YOLOv8 safety helmet wearing detection network.

Sci Rep. 2024-7-30

[7]
Accurate and fast detection of tomatoes based on improved YOLOv5s in natural environments.

Front Plant Sci. 2024-1-11

[8]
Detection of safety helmet and mask wearing using improved YOLOv5s.

Sci Rep. 2023-12-5

[9]
A deep learning-based ensemble method for helmet-wearing detection.

PeerJ Comput Sci. 2020-12-7

[10]
SHEL5K: An Extended Dataset and Benchmarking for Safety Helmet Detection.

Sensors (Basel). 2022-3-17

引用本文的文献

[1]
Investigation of Unsafe Construction Site Conditions Using Deep Learning Algorithms Using Unmanned Aerial Vehicles.

Sensors (Basel). 2024-10-20

本文引用的文献

[1]
Safety Helmet Detection Based on YOLOv5 Driven by Super-Resolution Reconstruction.

Sensors (Basel). 2023-2-6

[2]
Lightweight Helmet Detection Algorithm Using an Improved YOLOv4.

Sensors (Basel). 2023-1-21

[3]
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

IEEE Trans Pattern Anal Mach Intell. 2016-6-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索