文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用改进的 YOLOv5s 检测安全头盔和口罩佩戴情况。

Detection of safety helmet and mask wearing using improved YOLOv5s.

机构信息

Information Construction Office, Jilin Institute of Chemical Technology, Jilin City, 132022, China.

College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin City, 132022, China.

出版信息

Sci Rep. 2023 Dec 5;13(1):21417. doi: 10.1038/s41598-023-48943-3.


DOI:10.1038/s41598-023-48943-3
PMID:38049536
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10696075/
Abstract

With the advancement of society, ensuring the safety of personnel involved in municipal construction projects, particularly in the context of pandemic control measures, has become a matter of utmost importance. This paper introduces a security measure for municipal engineering, combining deep learning with object detection technology. It proposes a lightweight artificial intelligence (AI) detection method capable of simultaneously identifying individuals wearing masks and safety helmets. The method primarily incorporates the ShuffleNetv2 feature extraction mechanism within the framework of the YOLOv5s network to reduce computational overhead. Additionally, it employs the ECA attention mechanism and optimized loss functions to generate feature maps with more comprehensive information, thereby enhancing the precision of target detection. Experimental results indicate that this algorithm improves the mean average precision (mAP) value by 4.3%. Furthermore, it reduces parameter and computational loads by 54.8% and 53.8%, respectively, effectively striking a balance between lightweight operation and precision. This study serves as a valuable reference for research pertaining to lightweight target detection in the realm of municipal construction safety measures.

摘要

随着社会的进步,保障参与市政建设项目的人员的安全,特别是在疫情防控措施的背景下,已成为至关重要的问题。本文介绍了一种市政工程安全措施,将深度学习与目标检测技术相结合。提出了一种能够同时识别戴口罩和戴安全帽人员的轻量级人工智能(AI)检测方法。该方法主要在 YOLOv5s 网络框架内采用 ShuffleNetv2 特征提取机制,以减少计算开销。此外,还采用了 ECA 注意力机制和优化的损失函数,生成具有更全面信息的特征图,从而提高目标检测的精度。实验结果表明,该算法将平均精度(mAP)值提高了 4.3%。此外,它分别将参数和计算负载减少了 54.8%和 53.8%,在轻量级操作和精度之间实现了有效平衡。本研究为市政建设安全措施中轻量级目标检测的研究提供了有价值的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b900/10696075/08c57c9bee64/41598_2023_48943_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b900/10696075/49629163ec2b/41598_2023_48943_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b900/10696075/d194f8df8f94/41598_2023_48943_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b900/10696075/a112c6de5f29/41598_2023_48943_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b900/10696075/08c57c9bee64/41598_2023_48943_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b900/10696075/49629163ec2b/41598_2023_48943_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b900/10696075/d194f8df8f94/41598_2023_48943_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b900/10696075/a112c6de5f29/41598_2023_48943_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b900/10696075/08c57c9bee64/41598_2023_48943_Fig4_HTML.jpg

相似文献

[1]
Detection of safety helmet and mask wearing using improved YOLOv5s.

Sci Rep. 2023-12-5

[2]
Research on Safety Helmet Detection Algorithm Based on Improved YOLOv5s.

Sensors (Basel). 2023-6-22

[3]
Helmet-Wearing Tracking Detection Based on StrongSORT.

Sensors (Basel). 2023-2-3

[4]
Helmet Wearing State Detection Based on Improved Yolov5s.

Sensors (Basel). 2022-12-14

[5]
Research on helmet wearing detection method based on deep learning.

Sci Rep. 2024-3-25

[6]
Lightweight aerial image object detection algorithm based on improved YOLOv5s.

Sci Rep. 2023-5-15

[7]
Deep Learning-Based Biomimetic Identification Method for Mask Wearing Standardization.

Biomimetics (Basel). 2024-9-18

[8]
A lightweight network for improving wheat ears detection and counting based on YOLOv5s.

Front Plant Sci. 2023-12-18

[9]
Improvement of Lightweight Convolutional Neural Network Model Based on YOLO Algorithm and Its Research in Pavement Defect Detection.

Sensors (Basel). 2022-5-6

[10]
Lightweight helmet target detection algorithm combined with Effici-Bi-Level Routing Attention.

PLoS One. 2024

本文引用的文献

[1]
MOXA: A Deep Learning Based Unmanned Approach For Real-Time Monitoring of People Wearing Medical Masks.

Trans Indian Natl Acad Eng. 2020

[2]
Squeeze-and-Excitation Networks.

IEEE Trans Pattern Anal Mach Intell. 2020-8

[3]
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

IEEE Trans Pattern Anal Mach Intell. 2016-6-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索