Suppr超能文献

基于nnU-Net的自动分割模型在辅助颈动脉狭窄和颈动脉粥样硬化斑块评估中的应用。

The application of the nnU-Net-based automatic segmentation model in assisting carotid artery stenosis and carotid atherosclerotic plaque evaluation.

作者信息

Zhu Ying, Chen Liwei, Lu Wenjie, Gong Yongjun, Wang Ximing

机构信息

First Clinical Medical College, Soochow University, Suzhou, China.

Department of Radiology, School of Medicine, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Front Physiol. 2022 Dec 6;13:1057800. doi: 10.3389/fphys.2022.1057800. eCollection 2022.

Abstract

No new U-net (nnU-Net) is a newly-developed deep learning neural network, whose advantages in medical image segmentation have been noticed recently. This study aimed to investigate the value of the nnU-Net-based model for computed tomography angiography (CTA) imaging in assisting the evaluation of carotid artery stenosis (CAS) and atherosclerotic plaque. This study retrospectively enrolled 93 CAS-suspected patients who underwent head and neck CTA examination, then randomly divided them into the training set (N = 70) and the validation set (N = 23) in a 3:1 ratio. The radiologist-marked images in the training set were used for the development of the nnU-Net model, which was subsequently tested in the validation set. In the training set, the nnU-Net had already displayed a good performance for CAS diagnosis and atherosclerotic plaque segmentation. Then, its utility was further confirmed in the validation set: the Dice similarity coefficient value of the nnU-Net model in segmenting background, blood vessels, calcification plaques, and dark spots reached 0.975, 0.974 0.795, and 0.498, accordingly. Besides, the nnU-Net model displayed a good consistency with physicians in assessing CAS (Kappa = 0.893), stenosis degree (Kappa = 0.930), the number of calcification plaque (Kappa = 0.922), non-calcification (Kappa = 0.768) and mixed plaque (Kappa = 0.793), as well as the max thickness of calcification plaque (intraclass correlation coefficient = 0.972). Additionally, the evaluation time of the nnU-Net model was shortened compared with the physicians (27.3 ± 4.4 s vs. 296.8 ± 81.1 s, < 0.001). The automatic segmentation model based on nnU-Net shows good accuracy, reliability, and efficiency in assisting CTA to evaluate CAS and carotid atherosclerotic plaques.

摘要

新型U-net(nnU-Net)是一种新开发的深度学习神经网络,其在医学图像分割方面的优势最近已受到关注。本研究旨在探讨基于nnU-Net的模型在计算机断层血管造影(CTA)成像中辅助评估颈动脉狭窄(CAS)和动脉粥样硬化斑块的价值。本研究回顾性纳入了93例疑似CAS且接受头颈部CTA检查的患者,然后按3:1的比例将他们随机分为训练集(N = 70)和验证集(N = 23)。训练集中经放射科医生标记的图像用于开发nnU-Net模型,随后在验证集中对其进行测试。在训练集中,nnU-Net在CAS诊断和动脉粥样硬化斑块分割方面已表现出良好的性能。然后,其效用在验证集中得到进一步证实:nnU-Net模型在分割背景、血管、钙化斑块和黑点时的Dice相似系数值分别达到0.975、0.974、0.795和0.498。此外,nnU-Net模型在评估CAS(Kappa = 0.893)、狭窄程度(Kappa = 0.930)、钙化斑块数量(Kappa = 0.922)、非钙化(Kappa = 0.768)和混合斑块(Kappa = 0.793)以及钙化斑块的最大厚度(组内相关系数 = 0.972)方面与医生表现出良好的一致性。此外,与医生相比,nnU-Net模型的评估时间缩短了(27.3 ± 4.4秒对296.8 ± 81.1秒,< 0.001)。基于nnU-Net的自动分割模型在辅助CTA评估CAS和颈动脉粥样硬化斑块方面显示出良好的准确性、可靠性和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c4c/9763590/3417e6b622c6/fphys-13-1057800-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验