Suppr超能文献

通过非增强CT和深度学习检测食管癌

Esophageal cancer detection via non-contrast CT and deep learning.

作者信息

Lin Chong, Guo Yi, Huang Xu, Rao Shengxiang, Zhou Jianjun

机构信息

Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Shanghai, Fujian, China.

Xiamen Municipal Clinical Research Center for Medical Imaging, Xiamen, Fujian, China.

出版信息

Front Med (Lausanne). 2024 Mar 6;11:1356752. doi: 10.3389/fmed.2024.1356752. eCollection 2024.

Abstract

BACKGROUND

Esophageal cancer is the seventh most frequently diagnosed cancer with a high mortality rate and the sixth leading cause of cancer deaths in the world. Early detection of esophageal cancer is very vital for the patients. Traditionally, contrast computed tomography (CT) was used to detect esophageal carcinomas, but with the development of deep learning (DL) technology, it may now be possible for non-contrast CT to detect esophageal carcinomas. In this study, we aimed to establish a DL-based diagnostic system to stage esophageal cancer from non-contrast chest CT images.

METHODS

In this retrospective dual-center study, we included 397 primary esophageal cancer patients with pathologically confirmed non-contrast chest CT images, as well as 250 healthy individuals without esophageal tumors, confirmed through endoscopic examination. The images of these participants were treated as the training data. Additionally, images from 100 esophageal cancer patients and 100 healthy individuals were enrolled for model validation. The esophagus segmentation was performed using the no-new-Net (nnU-Net) model; based on the segmentation result and feature extraction, a decision tree was employed to classify whether cancer is present or not. We compared the diagnostic efficacy of the DL-based method with the performance of radiologists with various levels of experience. Meanwhile, a diagnostic performance comparison of radiologists with and without the aid of the DL-based method was also conducted.

RESULTS

In this study, the DL-based method demonstrated a high level of diagnostic efficacy in the detection of esophageal cancer, with a performance of AUC of 0.890, sensitivity of 0.900, specificity of 0.880, accuracy of 0.882, and F-score of 0.891. Furthermore, the incorporation of the DL-based method resulted in a significant improvement of the AUC values w.r.t. of three radiologists from 0.855/0.820/0.930 to 0.910/0.955/0.965 ( = 0.0004/<0.0001/0.0068, with DeLong's test).

CONCLUSION

The DL-based method shows a satisfactory performance of sensitivity and specificity for detecting esophageal cancers from non-contrast chest CT images. With the aid of the DL-based method, radiologists can attain better diagnostic workup for esophageal cancer and minimize the chance of missing esophageal cancers in reading the CT scans acquired for health check-up purposes.

摘要

背景

食管癌是全球第七大常见诊断癌症,死亡率高,是癌症死亡的第六大主要原因。食管癌的早期检测对患者至关重要。传统上,对比计算机断层扫描(CT)用于检测食管癌,但随着深度学习(DL)技术的发展,现在非对比CT可能也能够检测食管癌。在本研究中,我们旨在建立基于深度学习的诊断系统,用于从非对比胸部CT图像中对食管癌进行分期。

方法

在这项回顾性双中心研究中,我们纳入了397例经病理证实有非对比胸部CT图像的原发性食管癌患者,以及250例经内镜检查证实无食管肿瘤的健康个体。这些参与者的图像用作训练数据。此外,还纳入了100例食管癌患者和100例健康个体的图像用于模型验证。使用无新网络(nnU-Net)模型进行食管分割;基于分割结果和特征提取,采用决策树对是否存在癌症进行分类。我们将基于深度学习的方法的诊断效能与不同经验水平的放射科医生的表现进行了比较。同时,还对有和没有基于深度学习方法辅助的放射科医生的诊断性能进行了比较。

结果

在本研究中,基于深度学习的方法在食管癌检测中显示出较高的诊断效能,AUC为0.890,灵敏度为0.900,特异性为0.880,准确率为0.882,F值为0.891。此外,基于深度学习的方法的加入使三位放射科医生的AUC值从0.855/0.820/0.930显著提高到0.910/0.955/0.965(德龙检验,P值分别为0.0004/<0.0001/0.0068)。

结论

基于深度学习的方法在从非对比胸部CT图像检测食管癌方面显示出令人满意的灵敏度和特异性表现。借助基于深度学习的方法,放射科医生可以对食管癌进行更好的诊断检查,并在阅读用于健康检查目的的CT扫描时将漏诊食管癌的可能性降至最低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7614/10953501/abe9750be1be/fmed-11-1356752-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验