Suppr超能文献

MHAHF-UNet:一种用于颈动脉分割的多尺度混合注意力层次融合网络。

MHAHF-UNet: a multi-scale hybrid attention hierarchy fusion network for carotid artery segmentation.

作者信息

Jiang Changshuo, Gao Lin, Li Wei, Zou Maoyang, Zheng Qingxiao, Qiao Xuhua

机构信息

Chengdu University of Information Technology, Chengdu, 610225, China.

The Affiliated Hospital of Panzhihua University, Panzhihua, 617000, China.

出版信息

Int J Comput Assist Radiol Surg. 2025 Jun 17. doi: 10.1007/s11548-025-03449-3.

Abstract

PURPOSE

Carotid plaque is an early manifestation of carotid atherosclerosis, and its accurate segmentation helps to assess cardiovascular disease risk. However, existing carotid artery segmentation algorithms are difficult to accurately capture the structural features of morphologically diverse plaques and lack effective utilization of multilayer features.

METHODS

In order to solve the above problems, this paper proposes a multi-scale hybrid attention hierarchical fusion U-network structure (MHAHF-UNet) for segmenting ambiguous plaques in carotid artery images in order to improve the segmentation accuracy for complex structured images. The structure firstly introduces the median-enhanced orthogonal convolution module (MEOConv), which not only effectively suppresses the noise interference in ultrasound images, but also maintains the ability to perceive multi-scale features by combining the median-enhanced ternary channel mechanism and the depth-orthogonal convolution space mechanism. Secondly, it adopts the multi-fusion group convolutional gating module, which realizes the effective integration of shallow detailed features and deep semantic features through the adaptive control strategy of group convolution, and is able to flexibly regulate the transfer weights of features at different levels.

RESULTS

Experiments show that the MHAHF-UNet model achieves a Dice coefficient of and an IOU of in the carotid artery segmentation task.

CONCLUSION

The model is expected to provide strong support for the prevention and treatment of cardiovascular diseases.

摘要

目的

颈动脉斑块是颈动脉粥样硬化的早期表现,其准确分割有助于评估心血管疾病风险。然而,现有的颈动脉分割算法难以准确捕捉形态多样的斑块的结构特征,且缺乏对多层特征的有效利用。

方法

为了解决上述问题,本文提出一种多尺度混合注意力层次融合U网络结构(MHAHF-UNet),用于分割颈动脉图像中的模糊斑块,以提高对复杂结构图像的分割精度。该结构首先引入了中值增强正交卷积模块(MEOConv),其不仅有效抑制超声图像中的噪声干扰,还通过结合中值增强三通道机制和深度正交卷积空间机制保持感知多尺度特征的能力。其次,采用多融合组卷积门控模块,通过组卷积的自适应控制策略实现浅层细节特征和深层语义特征的有效融合,并能够灵活调节不同层次特征的传递权重。

结果

实验表明,MHAHF-UNet模型在颈动脉分割任务中实现了[具体Dice系数]的Dice系数和[具体IOU值]的交并比。

结论

该模型有望为心血管疾病的防治提供有力支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验