Qian Jiaming, Xia Weiyi, Huang Yuxia, Feng Jing, Chen Qian, Zuo Chao
Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, Jiangsu Province, 210094, China.
Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province, 210094, China.
Light Sci Appl. 2025 Sep 1;14(1):299. doi: 10.1038/s41377-025-01979-8.
Three-dimensional structured illumination microscopy (3DSIM) is an essential super-resolution imaging technique for visualizing volumetric subcellular structures at the nanoscale, capable of doubling both lateral and axial resolution beyond the diffraction limit. However, high-quality 3DSIM reconstruction is often hindered by uncertainties in experimental parameters, such as optical aberrations and fluorescence density heterogeneity. Here, we present PCA-3DSIM, a novel 3DSIM reconstruction framework that extends principal component analysis (PCA) from two-dimensional (2D) to three-dimensional (3D) super-resolution microscopy. To further compensate spatial nonuniformities of illumination parameters, PCA-3DSIM can be implemented in an adaptive tiled-block manner. By segmenting raw volumetric data into localized subsets, PCA-3DSIM enables accurate parameter estimation and effective interference rejection for high-fidelity, artifact-free 3D super-resolution reconstruction, with the inherent efficiency of PCA supporting the tiled reconstruction with limited computational burden. Experimental results demonstrate that PCA-3DSIM provides reliable reconstruction performance and improved robustness across diverse imaging scenarios, from custom-built platforms to commercial systems. These results establish PCA-3DSIM as a flexible and practical tool for super-resolved volumetric imaging of subcellular structures, with broad potential applications in biomedical research. This article developed PCA-3DSIM, a mathematically grounded enhancement to 3D structured illumination microscopy that improves robustness by integrating physical modeling with statistical analysis.
三维结构光照显微镜(3DSIM)是一种重要的超分辨率成像技术,用于在纳米尺度上可视化三维亚细胞结构,能够将横向和轴向分辨率提高一倍,超越衍射极限。然而,高质量的3DSIM重建常常受到实验参数不确定性的阻碍,如光学像差和荧光密度异质性。在此,我们提出了PCA-3DSIM,这是一种新颖的3DSIM重建框架,它将主成分分析(PCA)从二维(2D)超分辨率显微镜扩展到三维(3D)超分辨率显微镜。为了进一步补偿照明参数的空间不均匀性,PCA-3DSIM可以以自适应平铺块的方式实现。通过将原始体积数据分割成局部子集,PCA-3DSIM能够进行准确的参数估计和有效的干扰抑制,以实现高保真、无伪影的3D超分辨率重建,PCA的固有效率支持在有限计算负担下的平铺重建。实验结果表明,PCA-3DSIM在从定制平台到商业系统的各种成像场景中都提供了可靠的重建性能和更高的鲁棒性。这些结果确立了PCA-3DSIM作为一种灵活实用的工具,用于亚细胞结构的超分辨体积成像,在生物医学研究中具有广泛的潜在应用。本文开发了PCA-3DSIM,这是对三维结构光照显微镜的一种基于数学的改进,通过将物理建模与统计分析相结合提高了鲁棒性。