Suppr超能文献

开发一种社会计算方法,以研究YouTube上关于新冠疫情的讨论中的毒性传播与管控。

Developing a socio-computational approach to examine toxicity propagation and regulation in COVID-19 discourse on YouTube.

作者信息

Obadimu Adewale, Khaund Tuja, Mead Esther, Marcoux Thomas, Agarwal Nitin

机构信息

LinkedIn Corporation.

Department of Information Science, University of Arkansas at Little Rock, Arkansas USA.

出版信息

Inf Process Manag. 2021 Sep;58(5):102660. doi: 10.1016/j.ipm.2021.102660. Epub 2021 Jun 10.

Abstract

As the novel coronavirus (COVID-19) continues to ravage the world at an unprecedented rate, formal recommendations from medical experts are becoming muffled by the avalanche of toxic content posted on social media platforms. This high level of toxic content prevents the dissemination of important and time-sensitive information and jeopardizes the sense of community that online social networks (OSNs) seek to cultivate. In this article, we present techniques to analyze toxic content and actors that propagated it on YouTube during the initial months after COVID-19 information was made public. Our dataset consists of 544 channels, 3,488 videos, 453,111 commenters, and 849,689 comments. We applied topic modeling based on Latent Dirichlet Allocation (LDA) to identify dominant topics and evolving trends within the comments on relevant videos. We conducted social network analysis (SNA) to detect influential commenters, and toxicity analysis to measure the health of the network. SNA allows us to identify the top toxic users in the network, which led to the creation of experiments simulating the impact of removal of these users on toxicity in the network. Through this work, we demonstrate not only how to identify toxic content related to COVID-19 on YouTube and the actors who propagated this toxicity, but also how social media companies and policy makers can use this work. This work is novel in that we devised a set of experiments in an attempt to show how if social media platforms eliminate certain toxic users, they can improve the overall health of the network by reducing the overall toxicity level.

摘要

随着新型冠状病毒(COVID-19)以前所未有的速度持续肆虐全球,医学专家的正式建议正被社交媒体平台上大量的有害内容所掩盖。这种大量的有害内容阻碍了重要且时效性强的信息传播,并危及在线社交网络(OSN)试图培育的社区感。在本文中,我们展示了在COVID-19信息公开后的最初几个月里,分析YouTube上有害内容及其传播者的技术。我们的数据集包括544个频道、3488个视频、453111名评论者和849689条评论。我们应用基于潜在狄利克雷分配(LDA)的主题建模来识别相关视频评论中的主导主题和演变趋势。我们进行了社交网络分析(SNA)以检测有影响力的评论者,并进行了毒性分析以衡量网络的健康状况。SNA使我们能够识别网络中的顶级有害用户,这促使我们开展实验,模拟移除这些用户对网络毒性的影响。通过这项工作,我们不仅展示了如何在YouTube上识别与COVID-19相关的有害内容及其传播毒性的行为者,还展示了社交媒体公司和政策制定者如何利用这项工作。这项工作的新颖之处在于,我们设计了一系列实验,试图展示如果社交媒体平台清除某些有害用户,它们如何能够通过降低整体毒性水平来改善网络的整体健康状况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验