Suppr超能文献

采用光子二氧化硅微柱体的硅太阳能电池组件的被动辐射冷却

Passive Radiative Cooling of Silicon Solar Modules with Photonic Silica Microcylinders.

作者信息

Akerboom Evelijn, Veeken Tom, Hecker Christoph, van de Groep Jorik, Polman Albert

机构信息

Center for Nanophotonics, NWO-Institute AMOLF, Science Park 104, 1098 XGAmsterdam, The Netherlands.

Department of Applied Earth Sciences, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Hengelosestraat 99, 7500 AAEnschede, The Netherlands.

出版信息

ACS Photonics. 2022 Dec 21;9(12):3831-3840. doi: 10.1021/acsphotonics.2c01389. Epub 2022 Nov 8.

Abstract

Passive radiative cooling is a method to dissipate excess heat from a material by the spontaneous emission of infrared thermal radiation. For a solar cell, the challenge is to enhance PRC while retaining transparency for sunlight above the bandgap. Here, we design a hexagonal array of cylinders etched into the top surface of silica solar module glass to enhance passive radiative cooling. Multipolar Mie-like resonances in the cylinders are shown to cause antireflection effects in the infrared, which results in enhanced infrared emissivity. Using Fourier transform infrared spectrometry we measure the hemispherical reflectance of the fabricated structures and find the emissivity of the silica cylinder array in good correspondence with the simulated results. The microcylinder array increases the average emissivity between λ = 7.5-16 μm from 84.3% to 97.7%, without reducing visible light transmission.

摘要

被动辐射冷却 是一种通过自发发射红外热辐射来消散材料中多余热量的方法。对于太阳能电池而言,挑战在于增强被动辐射冷却的同时保持对带隙以上太阳光的透明度。在此,我们在二氧化硅太阳能模块玻璃的顶表面蚀刻出一个六边形圆柱阵列,以增强被动辐射冷却。圆柱中的多极类米氏共振被证明会在红外波段产生抗反射效应,从而提高红外发射率。利用傅里叶变换红外光谱法,我们测量了所制备结构的半球反射率,发现二氧化硅圆柱阵列的发射率与模拟结果吻合良好。微圆柱阵列将7.5-16μm波长范围内的平均发射率从84.3%提高到97.7%,且不降低可见光透过率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9760/9782778/08710ac3023f/ph2c01389_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验