Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Proc Natl Acad Sci U S A. 2023 Jan 3;120(1):e2211683120. doi: 10.1073/pnas.2211683120. Epub 2022 Dec 27.
Centromeres are the specialized regions of the chromosomes that direct faithful chromosome segregation during cell division. Despite their functional conservation, centromeres display features of rapidly evolving DNA and wide evolutionary diversity in size and organization. Previous work found that the noncanonical B-form DNA structures are abundant in the centromeres of several eukaryotic species with a possible implication for centromere specification. Thus far, systematic studies into the organization and function of non-B-form DNA in plants remain scarce. Here, we applied the oat system to investigate the role of non-B-form DNA in centromeres. We conducted chromatin immunoprecipitation sequencing using an antibody to the centromere-specific histone H3 variant (CENH3); this accurately positioned oat centromeres with different ploidy levels and identified a series of centromere-specific sequences including minisatellites and retrotransposons. To define genetic characteristics of oat centromeres, we surveyed the repeat sequences and found that dyad symmetries were abundant in oat centromeres and were predicted to form non-B-DNA structures in vivo. These structures including bent DNA, slipped DNA, Z-DNA, G-quadruplexes, and R-loops were prone to form within CENH3-binding regions. Dynamic conformational changes of predicted non-B-DNA occurred during the evolution from diploid to tetraploid to hexaploid oat. Furthermore, we applied the single-molecule technique of AFM and DNA:RNA immunoprecipitation with deep sequencing to validate R-loop enrichment in oat centromeres. Centromeric retrotransposons exhibited strong associations with R-loop formation. Taken together, our study elucidates the fundamental character of non-B-form DNA in the oat genome and reveals its potential role in centromeres.
着丝粒是染色体的特化区域,在细胞分裂过程中指导染色体的准确分离。尽管它们的功能保守,但着丝粒显示出快速进化的 DNA 特征和在大小和组织上广泛的进化多样性。以前的工作发现,非典型 B 型 DNA 结构在几个真核生物物种的着丝粒中大量存在,这可能对着丝粒的特异性有影响。迄今为止,关于植物中非 B 型 DNA 的组织和功能的系统研究仍然很少。在这里,我们应用燕麦系统来研究非 B 型 DNA 在着丝粒中的作用。我们使用针对着丝粒特异性组蛋白 H3 变体 (CENH3) 的抗体进行染色质免疫沉淀测序;这准确地定位了具有不同倍性水平的燕麦着丝粒,并鉴定了一系列着丝粒特异性序列,包括微卫星和反转录转座子。为了定义燕麦着丝粒的遗传特征,我们调查了重复序列,发现二联体对称性在燕麦着丝粒中很丰富,并预测在体内形成非 B-DNA 结构。这些结构包括弯曲 DNA、滑动 DNA、Z-DNA、G-四联体和 R-环,它们容易在 CENH3 结合区域内形成。从二倍体到四倍体到六倍体燕麦的进化过程中,预测的非 B-DNA 的动态构象变化发生了。此外,我们应用原子力显微镜的单分子技术和带有深度测序的 DNA:RNA 免疫沉淀来验证燕麦着丝粒中 R 环的富集。着丝粒反转录转座子与 R 环的形成有很强的关联。总之,我们的研究阐明了燕麦基因组中非 B 型 DNA 的基本特征,并揭示了它在着丝粒中的潜在作用。