Suppr超能文献

使用深度学习方法为硅橡胶颌面赝复体上色:两种方法的比较。

Using deep learning approaches for coloring silicone maxillofacial prostheses: A comparison of two approaches.

机构信息

Department of Prosthodontics, Faculty of Dentistry, Gazi University, Ankara, Turkey.

Department of Computer Engineering, Faculty of Engineering, Atilim University, Ankara, Turkey.

出版信息

J Indian Prosthodont Soc. 2023 Jan-Mar;23(1):84-89. doi: 10.4103/jips.jips_149_22.

Abstract

AIM

This study aimed to compare the performance of two deep learning algorithms, attention-based gated recurrent unit (GRU), and the artificial neural networks (ANNs) algorithm for coloring silicone maxillofacial prostheses.

SETTINGS AND DESIGN

This was an in vitro study.

MATERIALS AND METHODS

A total of 21 silicone samples in different colors were produced with four pigments (white, yellow, red, and blue). The color of the samples was measured with a spectrophotometer, then the LFNx01, aFNx01, and bFNx01 values were recorded. The relationship between the LFNx01, aFNx01, and bFNx01 values of each sample and the amount of each pigment in the compound of the same sample was used as the training dataset, entered into each algorithm, and the prediction models were obtained. While generating the prediction model for each sample, the data of the corresponding sample assigned as the target color were excluded. LFNx01, aFNx01, and bFNx01 values of each target sample were entered into the obtained models separately, and recipes indicating the ratios for mixing the four pigments were predicted. The mean absolute error (MAE) and root mean square error (RMSE) values between the original recipe used in the production of each silicone and the recipe created by both prediction models for the same silicone were calculated.

STATISTICAL ANALYSIS USED

Data were analyzed with the Student t-test (α=0.05).

RESULTS

The mean RMSE values and MAE values for the ANN algorithm (0.029 ± 0.0152 and 0.045 ± 0.0235, respectively) were found significantly higher than the attention-based GRU model (0.001 ± 0.0005 and 0.002 ± 0.0008, respectively) (P < 0.001).

CONCLUSIONS

Attention-based GRU model provided better performance than the ANN algorithm with respect to the MAE and RMSE values.

摘要

目的

本研究旨在比较两种深度学习算法,基于注意力的门控循环单元(GRU)和人工神经网络(ANNs)算法,在硅胶颌面赝复体配色方面的性能。

设置和设计

这是一项体外研究。

材料和方法

用四种颜料(白、黄、红、蓝)共制作了 21 个不同颜色的硅胶样本。用分光光度计测量样本的颜色,然后记录 LFNx01、aFNx01 和 bFNx01 值。将每个样本的 LFNx01、aFNx01 和 bFNx01 值与同一样本混合物中每种颜料的用量之间的关系作为训练数据集,输入到每个算法中,并获得预测模型。在为每个样本生成预测模型时,排除了分配为目标颜色的相应样本的数据。将每个目标样本的 LFNx01、aFNx01 和 bFNx01 值分别输入到获得的模型中,预测混合四种颜料的配方。计算每个硅胶的原始配方与两个预测模型为同一硅胶创建的配方之间的平均绝对误差(MAE)和均方根误差(RMSE)值。

统计学分析

采用学生 t 检验(α=0.05)进行数据分析。

结果

ANN 算法的平均 RMSE 值和 MAE 值(分别为 0.029 ± 0.0152 和 0.045 ± 0.0235)明显高于基于注意力的 GRU 模型(分别为 0.001 ± 0.0005 和 0.002 ± 0.0008)(P < 0.001)。

结论

在 MAE 和 RMSE 值方面,基于注意力的 GRU 模型的性能优于 ANN 算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bc5/10088445/9d8bbc504bd5/JIPS-23-84-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验