文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肽-MHC 限制性抗体在癌症免疫治疗中的简易再利用。

Facile repurposing of peptide-MHC-restricted antibodies for cancer immunotherapy.

机构信息

Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.

Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany.

出版信息

Nat Biotechnol. 2023 Jul;41(7):932-943. doi: 10.1038/s41587-022-01567-w. Epub 2023 Jan 2.


DOI:10.1038/s41587-022-01567-w
PMID:36593402
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10344781/
Abstract

Monoclonal antibodies (Abs) that recognize major histocompatability complex (MHC)-presented tumor antigens in a manner similar to T cell receptors (TCRs) have great potential as cancer immunotherapeutics. However, isolation of 'TCR-mimic' (TCRm) Abs is laborious because Abs have not evolved the structurally nuanced peptide-MHC restriction of αβ-TCRs. Here, we present a strategy for rapid isolation of highly peptide-specific and 'MHC-restricted' Abs by re-engineering preselected Abs that engage peptide-MHC in a manner structurally similar to that of conventional αβ-TCRs. We created structure-based libraries focused on the peptide-interacting residues of TCRm Ab complementarity-determining region (CDR) loops, and rapidly generated MHC-restricted Abs to both mouse and human tumor antigens that specifically killed target cells when formatted as IgG, bispecific T cell engager (BiTE) and chimeric antigen receptor-T (CAR-T). Crystallographic analysis of one selected pMHC-restricted Ab revealed highly peptide-specific recognition, validating the engineering strategy. This approach can yield tumor antigen-specific antibodies in several weeks, potentially enabling rapid clinical translation.

摘要

单克隆抗体 (Abs) 以类似于 T 细胞受体 (TCRs) 的方式识别主要组织相容性复合体 (MHC) 呈递的肿瘤抗原,具有作为癌症免疫疗法的巨大潜力。然而,由于 Abs 尚未进化出与 αβ-TCR 结构细微的肽-MHC 限制相匹配的结构,因此分离“TCR 模拟物”(TCRm) Abs 非常费力。在这里,我们提出了一种通过重新设计以类似于传统 αβ-TCR 方式与肽-MHC 结合的预先选择的 Abs 来快速分离高度肽特异性和“MHC 限制”Abs 的策略。我们创建了基于结构的文库,重点关注 TCRm Ab 互补决定区 (CDR) 环的肽相互作用残基,并且快速生成了针对小鼠和人类肿瘤抗原的 MHC 限制 Abs,当作为 IgG、双特异性 T 细胞衔接器 (BiTE) 和嵌合抗原受体-T (CAR-T) 构建时,这些 Abs 能够特异性杀伤靶细胞。对一种选定的 pMHC 限制 Ab 的晶体学分析显示出高度的肽特异性识别,验证了该工程策略。这种方法可以在数周内产生肿瘤抗原特异性抗体,有可能实现快速的临床转化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/84be1de02fe3/41587_2022_1567_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/c710fcd5daf9/41587_2022_1567_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/24e0f75094f9/41587_2022_1567_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/0b959b486fd7/41587_2022_1567_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/8ecd4213f0ff/41587_2022_1567_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/9f75c010dd0d/41587_2022_1567_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/fe8c8669e9b4/41587_2022_1567_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/c8bac161bc21/41587_2022_1567_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/f3c92626076b/41587_2022_1567_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/f922b8e216b0/41587_2022_1567_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/978a22700f5b/41587_2022_1567_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/3969ccf08de5/41587_2022_1567_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/66b3923987c0/41587_2022_1567_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/84be1de02fe3/41587_2022_1567_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/c710fcd5daf9/41587_2022_1567_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/24e0f75094f9/41587_2022_1567_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/0b959b486fd7/41587_2022_1567_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/8ecd4213f0ff/41587_2022_1567_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/9f75c010dd0d/41587_2022_1567_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/fe8c8669e9b4/41587_2022_1567_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/c8bac161bc21/41587_2022_1567_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/f3c92626076b/41587_2022_1567_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/f922b8e216b0/41587_2022_1567_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/978a22700f5b/41587_2022_1567_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/3969ccf08de5/41587_2022_1567_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/66b3923987c0/41587_2022_1567_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ba/10344781/84be1de02fe3/41587_2022_1567_Fig13_ESM.jpg

相似文献

[1]
Facile repurposing of peptide-MHC-restricted antibodies for cancer immunotherapy.

Nat Biotechnol. 2023-7

[2]
Evaluation of chimeric antigen receptor of humanized rabbit-derived T cell receptor-like antibody.

Cancer Sci. 2022-10

[3]
Development of a T-cell receptor mimic antibody targeting a novel Wilms tumor 1-derived peptide and analysis of its specificity.

Cancer Sci. 2020-8-26

[4]
T-Cell Receptor Mimic Antibodies for Cancer Immunotherapy.

Mol Cancer Ther. 2021-9

[5]
Engineering chimeric human and mouse major histocompatibility complex (MHC) class I tetramers for the production of T-cell receptor (TCR) mimic antibodies.

PLoS One. 2017-4-27

[6]
Functional comparison of engineered T cells carrying a native TCR versus TCR-like antibody-based chimeric antigen receptors indicates affinity/avidity thresholds.

J Immunol. 2014-12-1

[7]
Computationally profiling peptide:MHC recognition by T-cell receptors and T-cell receptor-mimetic antibodies.

Front Immunol. 2022

[8]
TCR mimic monoclonal antibodies induce apoptosis of tumor cells via immune effector-independent mechanisms.

J Immunol. 2011-1-31

[9]
The versatility of the αβ T-cell antigen receptor.

Protein Sci. 2014-1-28

[10]
Generation of TGFβR2(-1) neoantigen-specific HLA-DR4-restricted T cell receptors for cancer therapy.

J Immunother Cancer. 2023-2

引用本文的文献

[1]
Neoantigen-driven personalized tumor therapy: An update from discovery to clinical application.

Chin Med J (Engl). 2025-9-5

[2]
De novo design and structure of a peptide-centric TCR mimic binding module.

Science. 2025-7-24

[3]
CD8 + T Cells in Gastrointestinal Cancer: a Perspective on Targeting MicroRNA.

J Mol Med (Berl). 2025-7-17

[4]
Advances in cancer immunotherapy: historical perspectives, current developments, and future directions.

Mol Cancer. 2025-5-7

[5]
Identification of Post-translationally Modified MHC Class I-Associated Peptides as Potential Cancer Immunotherapeutic Targets.

Mol Cell Proteomics. 2025-4-14

[6]
Adoptive cell therapy against tumor immune evasion: mechanisms, innovations, and future directions.

Front Oncol. 2025-2-28

[7]
Diverse Roles of Antibodies in Antibody-Drug Conjugates.

Pharmaceuticals (Basel). 2025-1-29

[8]
design and structure of a peptide-centric TCR mimic binding module.

bioRxiv. 2024-12-20

[9]
The Evolving Applications of Bispecific Antibodies: Reaping the Harvest of Early Sowing and Planting New Seeds.

BioDrugs. 2025-1

[10]
Targeting peptide antigens using a multiallelic MHC I-binding system.

Nat Biotechnol. 2024-12-13

本文引用的文献

[1]
Cross-HLA targeting of intracellular oncoproteins with peptide-centric CARs.

Nature. 2021-11

[2]
50 Years of structural immunology.

J Biol Chem. 2021

[3]
Targeting a neoantigen derived from a common mutation.

Science. 2021-3-5

[4]
Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations.

Science. 2020-2-7

[5]
Targeting mutant p53-expressing tumours with a T cell receptor-like antibody specific for a wild-type antigen.

Nat Commun. 2019-11-26

[6]
The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications.

Nat Commun. 2019-9-27

[7]
TCR-like antibodies in cancer immunotherapy.

J Hematol Oncol. 2019-9-14

[8]
Single-molecule imaging reveals dynamic biphasic partition of RNA-binding proteins in stress granules.

J Cell Biol. 2018-2-20

[9]
Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes.

Cell. 2017-12-21

[10]
Therapeutic Antibodies against Intracellular Tumor Antigens.

Front Immunol. 2017-8-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索