IEEE Trans Med Imaging. 2020 Feb;39(2):478-487. doi: 10.1109/TMI.2019.2928790. Epub 2019 Jul 17.
While convolutional neural network (CNN) has been demonstrating powerful ability to learn hierarchical spatial features from medical images, it is still difficult to apply it directly to resting-state functional MRI (rs-fMRI) and the derived brain functional networks (BFNs). We propose a novel CNN framework to simultaneously learn embedded features from BFNs for brain disease diagnosis. Since BFNs can be built by considering both static and dynamic functional connectivity (FC), we first decompose rs-fMRI into multiple static BFNs with modified independent component analysis. Then, the voxel-wise variability in dynamic FC is used to quantify BFN dynamics. A set of paired 3D images representing static/dynamic BFNs can be fed into 3D CNNs, from which we can hierarchically and simultaneously learn static/dynamic BFN features. As a result, the dynamic BFN features can complement static BFN features and, at the meantime, different BFNs can help each other toward a joint and better classification. We validate our method with a publicly accessible, large cohort of rs-fMRI dataset in early-stage mild cognitive impairment (eMCI) diagnosis, which is one of the most challenging problems to the clinicians. By comparing with a conventional method, our method shows significant diagnostic performance improvement by almost 10%. This result demonstrates the effectiveness of deep learning in preclinical Alzheimer's disease diagnosis, based on the complex and high-dimensional voxel-wise spatiotemporal patterns of the resting-state brain functional connectomics. The framework provides a new but intuitive way to fully exploit deeply embedded diagnostic features from rs-fMRI for a better-individualized diagnosis of various neurological diseases.
虽然卷积神经网络(CNN)已经展示了从医学图像中学习层次空间特征的强大能力,但它仍然难以直接应用于静息态功能磁共振成像(rs-fMRI)和衍生的脑功能网络(BFN)。我们提出了一种新的 CNN 框架,用于同时从 BFN 中学习用于脑疾病诊断的嵌入式特征。由于 BFN 可以通过考虑静态和动态功能连接(FC)来构建,因此我们首先使用改进的独立成分分析将 rs-fMRI 分解为多个静态 BFN。然后,使用动态 FC 的体素间可变性来量化 BFN 动态。一组表示静态/动态 BFN 的配对 3D 图像可以输入到 3D CNN 中,从中我们可以分层和同时学习静态/动态 BFN 特征。因此,动态 BFN 特征可以补充静态 BFN 特征,同时,不同的 BFN 可以相互帮助,实现联合和更好的分类。我们使用一个公开的、大型的早期轻度认知障碍(eMCI)诊断 rs-fMRI 数据集验证了我们的方法,这是临床医生面临的最具挑战性的问题之一。通过与传统方法相比,我们的方法通过近 10%的提高显著提高了诊断性能。该结果证明了深度学习在基于静息态脑功能连接组学的复杂和高维体素时空模式的临床前阿尔茨海默病诊断中的有效性。该框架提供了一种新的但直观的方法,可以充分利用 rs-fMRI 中的嵌入式诊断特征,以实现对各种神经疾病的更好个体化诊断。