Suppr超能文献

ChemFlow─从 2D 化学文库到蛋白质-配体结合自由能。

ChemFlow─From 2D Chemical Libraries to Protein-Ligand Binding Free Energies.

机构信息

Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg Cedex 67083, France.

Department of Physics, Auburn University, Auburn, Alabama 36849, United States.

出版信息

J Chem Inf Model. 2023 Jan 23;63(2):407-411. doi: 10.1021/acs.jcim.2c00919. Epub 2023 Jan 5.

Abstract

The accurate prediction of protein-ligand binding affinities is a fundamental problem for the rational design of new drug entities. Current computational approaches are either too expensive or inaccurate to be effectively used in virtual high-throughput screening campaigns. In addition, the most sophisticated methods, e.g., those based on configurational sampling by molecular dynamics, require significant pre- and postprocessing to provide a final ranking, which hinders straightforward applications by nonexpert users. We present a novel computational platform named ChemFlow to bridge the gap between 2D chemical libraries and estimated protein-ligand binding affinities. The software is designed to prepare a library of compounds provided in SMILES or SDF format, dock them into the protein binding site, and rescore the poses by simplified free energy calculations. Using a data set of 626 protein-ligand complexes and GPU computing, we demonstrate that ChemFlow provides relative binding free energies with an RMSE < 2 kcal/mol at a rate of 1000 ligands per day on a midsize computer cluster. The software is publicly available at https://github.com/IFMlab/ChemFlow.

摘要

准确预测蛋白质-配体结合亲和力是合理设计新药物实体的一个基本问题。目前的计算方法要么过于昂贵,要么不够准确,无法有效地用于虚拟高通量筛选活动。此外,最复杂的方法,例如基于分子动力学的构象采样的那些方法,需要进行大量的预处理和后处理才能提供最终的排序,这阻碍了非专业用户的直接应用。我们提出了一个名为 ChemFlow 的新计算平台,以弥合 2D 化学库和估计的蛋白质-配体结合亲和力之间的差距。该软件旨在准备以 SMILES 或 SDF 格式提供的化合物库,将它们对接入蛋白质结合位点,并通过简化的自由能计算重新对构象进行评分。使用包含 626 个蛋白质-配体复合物的数据集和 GPU 计算,我们证明了 ChemFlow 在中型计算机集群上每天可以处理 1000 个配体,以低于 2 kcal/mol 的 RMSE 提供相对结合自由能。该软件可在 https://github.com/IFMlab/ChemFlow 上公开获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1993/9875305/569d76438977/ci2c00919_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验