Bala Arindam, So Byungjun, Pujar Pavan, Moon Changgyun, Kim Sunkook
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea.
ACS Nano. 2023 Mar 14;17(5):4296-4305. doi: 10.1021/acsnano.2c08615. Epub 2023 Jan 6.
Two-dimensional (2D) materials are favorable candidates for resistive memories in high-density nanoelectronics owing to their ultrathin scaling and controllable interfacial characteristics. However, high processing temperatures and difficulties in mechanical transfer are intriguing challenges associated with their implementation in large areas with crossbar architecture. A high processing temperature may damage the electrical functionalities of the bottom electrode, and mechanical transfer of 2D materials may introduce undesirable microscopic defects and macroscopic discontinuities. In this study, an in situ fabrication of an electrode and 2D-molybdenum diselenide (MoSe) is reported. The controlled diffusion of selenium (Se) in the predeposited molybdenum (Mo) produces Mo//Mo:Se stacks with a few layers of MoSe on top and MoSe on the bottom. Diffusion-assisted Mo//Mo:Se fabrication is observed over a large area (4 in. wafer). Additionally, a 5 × 5 array of crossbar memristors (Mo//Mo:Se//Ag) is fabricated using the diffusion of Se in patterned Mo. These memristors exhibit a small switching voltage (∼1.1 V), high endurance (>250 cycles), and excellent retention (>15 000 s) with minimum cycle-to-cycle and device-to-device variation. Thus, the proposed nondestructive in situ technique not only simplifies the fabrication but also minimizes the number of required stages.
二维(2D)材料因其超薄尺寸和可控的界面特性,是高密度纳米电子学中电阻式存储器的理想候选材料。然而,高加工温度以及机械转移方面的困难是在具有交叉杆架构的大面积区域中实现它们所面临的有趣挑战。高加工温度可能会损坏底部电极的电学功能,而二维材料的机械转移可能会引入不期望的微观缺陷和宏观不连续性。在本研究中,报道了一种电极与二维二硒化钼(MoSe₂)的原位制备方法。硒(Se)在预沉积的钼(Mo)中的可控扩散产生了顶部有几层MoSe₂且底部有MoSe₂的Mo//Mo:Se堆叠结构。在大面积(4英寸晶圆)上观察到了扩散辅助的Mo//Mo:Se制备过程。此外,利用硒在图案化钼中的扩散制备了一个5×5阵列的交叉杆忆阻器(Mo//Mo:Se//Ag)。这些忆阻器表现出小的开关电压(约1.1 V)、高耐久性(>250次循环)以及出色的保持性(>15000秒),且循环间和器件间变化最小。因此,所提出的无损原位技术不仅简化了制备过程,还减少了所需步骤的数量。