Suppr超能文献

使用神经网络估计不同整体式 PET 探测器的分辨率。

Resolution estimation in different monolithic PET detectors using neural networks.

机构信息

Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninskii Pr., 119991, Russia.

Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninskii Pr., 119991, Russia.

出版信息

Phys Med. 2023 Feb;106:102527. doi: 10.1016/j.ejmp.2023.102527. Epub 2023 Jan 5.

Abstract

PURPOSE

We use neural networks to evaluate and compare the spatial resolution of two different simulated monolithic PET detector elements. The effects of mixing events with single photoeffect interactions and multiple Compton scatterings are also studied.

METHODS

Two PET detector models were used in this study. The first one consisted of a LYSO crystal plate with 19.25 × 19.25 × 12 mm dimensions and 256-channel photomultiplier with parameters modeled after a Hamamatsu S-13615-1050N-16 SiPM. The second model used a larger LYSO crystal (57.6 × 57.6 × 12 mm) and a 64-channel Sensl ARRAYC-60035-64P-PCB photomultiplier. A feed-forward neural network was used to reconstruct the point of 511 keV gamma interaction. The number of layers and the number of neurons per layer were varied.

RESULTS

The best resolution was achieved with the 57.6 × 57.6 mm detector model, with an average of 0.74 ± 0.01 mm for the XY plane and an average 1.01 ± 0.01 mm for the Z coordinate (depth of interaction).

CONCLUSIONS

Neural networks can be a powerful tool that can help to determine the optimal parameters for a design of an experimental device. This study demonstrates how neural networks can be used to evaluate the performance of two detector variants while not being dependent on specific signal and noise functions.

摘要

目的

我们使用神经网络评估和比较两种不同的整体式 PET 探测器元件的空间分辨率。还研究了混合单光电子相互作用和多次康普顿散射事件的影响。

方法

本研究使用了两种 PET 探测器模型。第一个模型由一个 19.25×19.25×12mm 尺寸的 LYSO 晶体板和一个参数模拟了 Hamamatsu S-13615-1050N-16 SiPM 的 256 通道光电倍增管组成。第二个模型使用了更大的 LYSO 晶体(57.6×57.6×12mm)和一个 64 通道 Sensl ARRAYC-60035-64P-PCB 光电倍增管。前馈神经网络用于重建 511keV 伽马相互作用的点。改变了层数和每层神经元的数量。

结果

57.6×57.6mm 探测器模型获得了最佳分辨率,XY 平面的平均分辨率为 0.74±0.01mm,Z 坐标(相互作用深度)的平均分辨率为 1.01±0.01mm。

结论

神经网络可以是一个强大的工具,可以帮助确定实验设备设计的最佳参数。本研究演示了如何使用神经网络来评估两种探测器变体的性能,而不依赖于特定的信号和噪声函数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验