Suppr超能文献

长期 EMT 诱导过程中获得的表观遗传记忆控制着向上皮状态的恢复。

Epigenetic memory acquired during long-term EMT induction governs the recovery to the epithelial state.

机构信息

Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India.

Department of Biology, Widener University, Chester, PA 19013, USA.

出版信息

J R Soc Interface. 2023 Jan;20(198):20220627. doi: 10.1098/rsif.2022.0627. Epub 2023 Jan 11.

Abstract

Epithelial-mesenchymal transition (EMT) and its reverse mesenchymal-epithelial transition (MET) are critical during embryonic development, wound healing and cancer metastasis. While phenotypic changes during short-term EMT induction are reversible, long-term EMT induction has been often associated with irreversibility. Here, we show that phenotypic changes seen in MCF10A cells upon long-term EMT induction by TGF need not be irreversible, but have relatively longer time scales of reversibility than those seen in short-term induction. Next, using a phenomenological mathematical model to account for the chromatin-mediated epigenetic silencing of the miR-200 family by ZEB family, we highlight how the epigenetic memory gained during long-term EMT induction can slow the recovery to the epithelial state post-TGF withdrawal. Our results suggest that epigenetic modifiers can govern the extent and time scale of EMT reversibility and advise caution against labelling phenotypic changes seen in long-term EMT induction as 'irreversible'.

摘要

上皮-间充质转化(EMT)及其逆转的间充质-上皮转化(MET)在胚胎发育、创伤愈合和癌症转移过程中至关重要。虽然 EMT 诱导过程中的短期表型变化是可逆的,但长期 EMT 诱导通常与不可逆性相关。在这里,我们表明,TGF 诱导 MCF10A 细胞长期 EMT 诱导后出现的表型变化并非不可逆转,而是具有比短期诱导中观察到的更长的可逆转时间尺度。接下来,我们使用一种现象学数学模型来解释 ZEB 家族通过染色质介导的 miR-200 家族的表观遗传沉默,突出了在长期 EMT 诱导过程中获得的表观遗传记忆如何减缓 TGF 去除后向上皮状态的恢复。我们的研究结果表明,表观遗传修饰因子可以控制 EMT 逆转的程度和时间尺度,并建议谨慎对待将长期 EMT 诱导中观察到的表型变化标记为“不可逆”。

相似文献

1
Epigenetic memory acquired during long-term EMT induction governs the recovery to the epithelial state.
J R Soc Interface. 2023 Jan;20(198):20220627. doi: 10.1098/rsif.2022.0627. Epub 2023 Jan 11.
3
Reprogramming during epithelial to mesenchymal transition under the control of TGFβ.
Cell Adh Migr. 2015;9(3):233-46. doi: 10.4161/19336918.2014.983794. Epub 2014 Nov 17.
4
Roles and epigenetic regulation of epithelial-mesenchymal transition and its transcription factors in cancer initiation and progression.
Cell Mol Life Sci. 2016 Dec;73(24):4643-4660. doi: 10.1007/s00018-016-2313-z. Epub 2016 Jul 26.
5
Zeb1 and Snail1 engage miR-200f transcriptional and epigenetic regulation during EMT.
Int J Cancer. 2015 Feb 15;136(4):E62-73. doi: 10.1002/ijc.29177. Epub 2014 Sep 12.
6
7
8
SNAIL driven by a feed forward loop motif promotes TGFinduced epithelial to mesenchymal transition.
Biomed Phys Eng Express. 2022 Jun 24;8(4). doi: 10.1088/2057-1976/ac7896.
10
Redox processes inform multivariate transdifferentiation trajectories associated with TGFβ-induced epithelial-mesenchymal transition.
Free Radic Biol Med. 2014 Nov;76:1-13. doi: 10.1016/j.freeradbiomed.2014.07.032. Epub 2014 Aug 1.

引用本文的文献

1
A Model of Epigenetic Inheritance Accounts for Unexpected Adaptation to Unforeseen Challenges.
Adv Sci (Weinh). 2025 May;12(18):e2414297. doi: 10.1002/advs.202414297. Epub 2025 Mar 18.
4
Theory of epigenetic switching due to stochastic histone mark loss during DNA replication.
Phys Biol. 2024 Nov 29;22(1):016005. doi: 10.1088/1478-3975/ad942c.
5
Epithelial-Mesenchymal Plasticity and Epigenetic Heterogeneity in Cancer.
Cancers (Basel). 2024 Sep 27;16(19):3289. doi: 10.3390/cancers16193289.
6
Dissecting reversible and irreversible single cell state transitions from gene regulatory networks.
bioRxiv. 2024 Sep 1:2024.08.30.610498. doi: 10.1101/2024.08.30.610498.
7
Cancer drug-tolerant persister cells: from biological questions to clinical opportunities.
Nat Rev Cancer. 2024 Oct;24(10):694-717. doi: 10.1038/s41568-024-00737-z. Epub 2024 Sep 2.
8
Cancer spreading patterns based on epithelial-mesenchymal plasticity.
Front Cell Dev Biol. 2024 Apr 11;12:1259953. doi: 10.3389/fcell.2024.1259953. eCollection 2024.
10
The epithelial-mesenchymal plasticity landscape: principles of design and mechanisms of regulation.
Nat Rev Genet. 2023 Sep;24(9):590-609. doi: 10.1038/s41576-023-00601-0. Epub 2023 May 11.

本文引用的文献

1
Functional Resilience of Mutually Repressing Motifs Embedded in Larger Networks.
Biomolecules. 2022 Dec 9;12(12):1842. doi: 10.3390/biom12121842.
3
Epigenetic factor competition reshapes the EMT landscape.
Proc Natl Acad Sci U S A. 2022 Oct 18;119(42):e2210844119. doi: 10.1073/pnas.2210844119. Epub 2022 Oct 10.
5
Mapping Phenotypic Plasticity upon the Cancer Cell State Landscape Using Manifold Learning.
Cancer Discov. 2022 Aug 5;12(8):1847-1859. doi: 10.1158/2159-8290.CD-21-0282.
7
Nonmodular oscillator and switch based on RNA decay drive regeneration of multimodal gene expression.
Nucleic Acids Res. 2022 Apr 22;50(7):3693-3708. doi: 10.1093/nar/gkac217.
8
Population Dynamics of Epithelial-Mesenchymal Heterogeneity in Cancer Cells.
Biomolecules. 2022 Feb 23;12(3):348. doi: 10.3390/biom12030348.
9
Pioneer factors as master regulators of the epigenome and cell fate.
Nat Rev Mol Cell Biol. 2022 Jul;23(7):449-464. doi: 10.1038/s41580-022-00464-z. Epub 2022 Mar 9.
10
CTCF Expression and Dynamic Motif Accessibility Modulates Epithelial-Mesenchymal Gene Expression.
Cancers (Basel). 2022 Jan 1;14(1):209. doi: 10.3390/cancers14010209.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验