Suppr超能文献

利用气候变量和机器学习技术评估哥斯达黎加登革热风险。

Assessing dengue fever risk in Costa Rica by using climate variables and machine learning techniques.

机构信息

Centro de Investigación en Matemática Pura y Aplicada - Escuela de Matemática, Universidad de Costa Rica, San José, Costa Rica.

Centro de Investigación en Matemática Pura y Aplicada - Escuela de Estadística, Universidad de Costa Rica, San José, Costa Rica.

出版信息

PLoS Negl Trop Dis. 2023 Jan 13;17(1):e0011047. doi: 10.1371/journal.pntd.0011047. eCollection 2023 Jan.

Abstract

Dengue fever is a vector-borne disease affecting millions yearly, mostly in tropical and subtropical countries. Driven mainly by social and environmental factors, dengue incidence and geographical expansion have increased in recent decades. Therefore, understanding how climate variables drive dengue outbreaks is challenging and a problem of interest for decision-makers that could aid in improving surveillance and resource allocation. Here, we explore the effect of climate variables on relative dengue risk in 32 cantons of interest for public health authorities in Costa Rica. Relative dengue risk is forecast using a Generalized Additive Model for location, scale, and shape and a Random Forest approach. Models use a training period from 2000 to 2020 and predicted climatic variables obtained with a vector auto-regressive model. Results show reliable projections, and climate variables predictions allow for a prospective instead of a retrospective study.

摘要

登革热是一种由媒介传播的疾病,每年影响数百万人,主要发生在热带和亚热带国家。近年来,由于社会和环境因素的驱动,登革热的发病率和地理分布范围都有所增加。因此,了解气候变量如何驱动登革热疫情是具有挑战性的,也是决策者感兴趣的问题,这有助于改善监测和资源分配。在这里,我们探讨了气候变量对哥斯达黎加公共卫生当局关注的 32 个县的相对登革热风险的影响。相对登革热风险使用广义加性模型进行位置、规模和形状预测,并采用随机森林方法。模型使用 2000 年至 2020 年的训练期,预测气候变量采用向量自回归模型获得。结果表明,预测结果可靠,气候变量预测可以进行前瞻性研究,而不是回顾性研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9797/9879398/315cfb7e2697/pntd.0011047.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验