Department of Biological Sciences, Carnegie Mellon University, Pittsburgh Pennsylvania 15213.
Optical Nanoscopy in Neuroscience, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, 37099 Göttingen, Germany.
J Neurosci. 2023 Jan 25;43(4):584-600. doi: 10.1523/JNEUROSCI.1372-22.2022. Epub 2022 Dec 12.
High-throughput anatomic data can stimulate and constrain new hypotheses about how neural circuits change in response to experience. Here, we use fluorescence-based reagents for presynaptic and postsynaptic labeling to monitor changes in thalamocortical synapses onto different compartments of layer 5 (L5) pyramidal (Pyr) neurons in somatosensory (barrel) cortex from mixed-sex mice during whisker-dependent learning (Audette et al., 2019). Using axonal fills and molecular-genetic tags for synapse identification in fixed tissue from Rbp4-Cre transgenic mice, we found that thalamocortical synapses from the higher-order posterior medial thalamic nucleus showed rapid morphologic changes in both presynaptic and postsynaptic structures at the earliest stages of sensory association training. Detected increases in thalamocortical synaptic size were compartment specific, occurring selectively in the proximal dendrites onto L5 Pyr and not at inputs onto their apical tufts in L1. Both axonal and dendritic changes were transient, normalizing back to baseline as animals became expert in the task. Anatomical measurements were corroborated by electrophysiological recordings at different stages of training. Thus, fluorescence-based analysis of input- and target-specific synapses can reveal compartment-specific changes in synapse properties during learning. Synaptic changes underlie the cellular basis of learning, experience, and neurologic diseases. Neuroanatomical methods to assess synaptic plasticity can provide critical spatial information necessary for building models of neuronal computations during learning and experience but are technically and fiscally intensive. Here, we describe a confocal fluorescence microscopy-based analytical method to assess input, cell type, and dendritic location-specific synaptic plasticity in a sensory learning assay. Our method not only confirms prior electrophysiological measurements but allows us to predict functional strength of synapses in a pathway-specific manner. Our findings also indicate that changes in primary sensory cortices are transient, occurring during early learning. Fluorescence-based synapse identification can be an efficient and easily adopted approach to study synaptic changes in a variety of experimental paradigms.
高通量解剖数据可以刺激和限制关于神经回路如何响应经验而变化的新假设。在这里,我们使用基于荧光的突触前和突触后标记物来监测体感(桶状)皮层中不同层 5(L5)锥体(Pyr)神经元区室的丘脑皮层突触在混合性别小鼠的胡须依赖性学习过程中的变化(Audette 等人,2019 年)。在 Rbp4-Cre 转基因小鼠的固定组织中使用轴突填充和分子遗传标记物来识别突触,我们发现来自较高阶的后内侧丘脑核的丘脑皮层突触在前突触和后突触结构中都表现出快速形态变化在感觉联想训练的最早阶段。检测到的丘脑皮层突触大小增加具有区室特异性,仅选择性地发生在 L5 Pyr 的近端树突上,而不在 L1 上它们的顶树突上。轴突和树突变化都是短暂的,随着动物在任务中变得熟练,它们会恢复到基线。解剖学测量结果通过在训练的不同阶段进行的电生理记录得到证实。因此,基于荧光的输入和靶标特异性突触分析可以揭示学习过程中突触特性的区室特异性变化。突触变化是学习、经验和神经疾病的细胞基础。评估突触可塑性的神经解剖学方法可以提供在学习和经验过程中建立神经元计算模型所需的关键空间信息,但技术和财政密集度很高。在这里,我们描述了一种基于共聚焦荧光显微镜的分析方法,用于评估感觉学习测定中输入、细胞类型和树突位置特异性突触可塑性。我们的方法不仅证实了先前的电生理测量结果,而且还使我们能够以特定于途径的方式预测突触的功能强度。我们的发现还表明,初级感觉皮层的变化是短暂的,发生在早期学习期间。基于荧光的突触识别可以成为一种有效的且易于采用的方法,用于在各种实验范式中研究突触变化。