Department of Anatomy and Neuroscience, School of Medicine, Autónoma de Madrid University, 28029 Madrid, Spain.
Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, 52425 Jülich, Germany.
J Neurosci. 2020 Mar 25;40(13):2663-2679. doi: 10.1523/JNEUROSCI.2886-19.2020. Epub 2020 Feb 13.
Thalamocortical posterior nucleus (Po) axons innervating the vibrissal somatosensory (S1) and motor (MC) cortices are key links in the brain neuronal network that allows rodents to explore the environment whisking with their motile snout vibrissae. Here, using fine-scale high-end 3D electron microscopy, we demonstrate in adult male C57BL/6 wild-type mice marked differences between MC versus S1 Po synapses in (1) bouton and active zone size, (2) neurotransmitter vesicle pool size, (3) distribution of mitochondria around synapses, and (4) proportion of synapses established on dendritic spines and dendritic shafts. These differences are as large, or even more pronounced, than those between Po and ventro-posterior thalamic nucleus synapses in S1. Moreover, using single-axon transfection labeling, we demonstrate that the above differences actually occur on the MC versus the S1 branches of individual Po cell axons that innervate both areas. Along with recently-discovered divergences in efficacy and plasticity, the synaptic structure differences reported here thus reveal a new subcellular level of complexity. This is a finding that upends current models of thalamocortical circuitry, and that might as well illuminate the functional logic of other branched projection axon systems. Many long-distance brain connections depend on neurons whose branched axons target separate regions. Using 3D electron microscopy and single-cell transfection, we investigated the mouse Posterior thalamic nucleus (Po) cell axons that simultaneously innervate motor and sensory areas of the cerebral cortex involved in whisker movement control. We demonstrate significant differences in the size of the boutons made in each area by individual Po axons, as well as in functionally-relevant parameters in the composition of their synapses. In addition, we found similarly large differences between the synapses of Po versus ventral posteromedial thalamic nucleus axons in the whisker sensory cortex. Area-specific synapse structure in individual axons implies a new, unsuspected level of complexity in long-distance brain connections.
丘脑皮质后核 (Po) 投射到触须感觉 (S1) 和运动 (MC) 皮质的轴突是大脑神经元网络中的关键连接,使啮齿动物能够通过其可移动的触须探索环境。在这里,使用精细的高端 3D 电子显微镜,我们在成年雄性 C57BL/6 野生型小鼠中证明了 MC 与 S1 Po 突触之间存在显著差异,表现在:(1) 末梢和活性区大小;(2) 神经递质囊泡池大小;(3) 突触周围线粒体的分布;(4) 建立在树突棘和树突干上的突触比例。这些差异与 S1 中 Po 和腹后丘脑核突触之间的差异一样大,甚至更大。此外,使用单轴突转染标记,我们证明了上述差异实际上发生在支配这两个区域的 Po 细胞轴的 MC 与 S1 分支上。与最近发现的功效和可塑性差异一起,这里报道的突触结构差异揭示了一个新的亚细胞水平的复杂性。这一发现颠覆了当前的丘脑皮质电路模型,也可能阐明了其他分支投射轴突系统的功能逻辑。许多长距离脑连接依赖于其分支轴突靶向不同区域的神经元。通过 3D 电子显微镜和单细胞转染,我们研究了同时支配参与触须运动控制的大脑皮层运动和感觉区域的小鼠丘脑后核 (Po) 细胞轴。我们证明了个体 Po 轴突在每个区域形成的末梢大小以及它们突触组成中的功能相关参数存在显著差异。此外,我们还发现 Po 与触须感觉皮层腹后内侧丘脑核轴突之间的突触也存在类似的巨大差异。单个轴突中的区域特异性突触结构暗示了长距离脑连接中存在新的、意想不到的复杂性。