Suppr超能文献

用于快速扩散相关光谱的光子计数无损压缩感知

Lossless Compressed Sensing of Photon Counts for Fast Diffuse Correlation Spectroscopy.

作者信息

Biswas Arindam, Parthasarathy Ashwin B

机构信息

Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA.

出版信息

IEEE Access. 2022;10:129754-129762. doi: 10.1109/access.2022.3228439. Epub 2022 Dec 12.

Abstract

Diffuse Correlation Spectroscopy (DCS), a noninvasive optical technique, measures deep tissue blood flow using avalanche photon counting modules and data acquisition devices such as FPGAs or correlator boards. Conventional DCS instruments use in-processor counter modules that consume 32 bits/channel which is inefficient for low-photon budget situations prevalent in diffuse optics. Scaling these photon counters for large-scale imaging applications is difficult due to bandwidth and processing time considerations. Here, we introduce a new, lossless compressed sensing approach for fast and efficient detection of photon counts. The compressed DCS method uses an array of binary-coded-decimal counters to record photon counts from 8 channels simultaneously as a single 32-bit number. We validate the compressed DCS approach by comparisons with conventional DCS in experiments on tissue simulating phantoms and in-vivo arm cuff occlusion. Lossless compressed DCS was implemented with 87.5% compression efficiency. In tissue simulating phantoms, it was able to accurately estimate a tissue blood flow index, with no statistically significant difference compared to conventional DCS. Compressed DCS also recorded blood flow in vivo, in human forearm, with signal-to-noise ratio and dynamic range comparable to conventional DCS. Lossless 87.5% efficient compressed sensing counting of photon counts meets and exceeds benchmarks set by conventional DCS systems, offering a low-cost alternative for fast (~100 Hz) deep tissue blood flow measurement with optics.

摘要

扩散相关光谱法(DCS)是一种非侵入性光学技术,它使用雪崩光子计数模块以及诸如现场可编程门阵列(FPGA)或相关器板等数据采集设备来测量深部组织血流。传统的DCS仪器使用处理器内计数器模块,每个通道消耗32位,这对于漫射光学中普遍存在的低光子预算情况效率低下。由于带宽和处理时间的考虑,将这些光子计数器扩展用于大规模成像应用很困难。在此,我们引入一种新的无损压缩传感方法,用于快速高效地检测光子计数。压缩DCS方法使用一系列二进制编码十进制计数器,将来自8个通道的光子计数同时记录为一个32位数字。我们通过在组织模拟体模实验和体内手臂袖带阻塞实验中与传统DCS进行比较,验证了压缩DCS方法。无损压缩DCS的压缩效率达到87.5%。在组织模拟体模中,它能够准确估计组织血流指数,与传统DCS相比无统计学显著差异。压缩DCS还记录了人体前臂的体内血流,其信噪比和动态范围与传统DCS相当。光子计数的87.5%高效无损压缩传感计数达到并超过了传统DCS系统设定的基准,为使用光学方法快速(约100Hz)测量深部组织血流提供了一种低成本替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71f/9835098/ad5b7e9c4101/nihms-1859480-f0003.jpg

相似文献

1
Lossless Compressed Sensing of Photon Counts for Fast Diffuse Correlation Spectroscopy.
IEEE Access. 2022;10:129754-129762. doi: 10.1109/access.2022.3228439. Epub 2022 Dec 12.
2
Non-invasive low-cost deep tissue blood flow measurement with integrated Diffuse Speckle Contrast Spectroscopy.
Front Neuroergon. 2024 Jan 8;4:1288922. doi: 10.3389/fnrgo.2023.1288922. eCollection 2023.
3
Fast blood flow monitoring in deep tissues with real-time software correlators.
Biomed Opt Express. 2016 Feb 3;7(3):776-97. doi: 10.1364/BOE.7.000776. eCollection 2016 Mar 1.
4
Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light.
J Biomed Opt. 2020 Sep;25(9). doi: 10.1117/1.JBO.25.9.097003.
5
Fast diffuse correlation spectroscopy with a low-cost, fiber-less embedded diode laser.
Biomed Opt Express. 2021 Oct 4;12(11):6686-6700. doi: 10.1364/BOE.435136. eCollection 2021 Nov 1.
7
Superconducting nanowire single-photon sensing of cerebral blood flow.
Neurophotonics. 2021 Jul;8(3):035006. doi: 10.1117/1.NPh.8.3.035006. Epub 2021 Aug 19.
8
A Device-on-Chip Solution for Real-Time Diffuse Correlation Spectroscopy Using FPGA.
Biosensors (Basel). 2024 Aug 8;14(8):384. doi: 10.3390/bios14080384.
10
Fast pulsatile blood flow measurement in deep tissue through a multimode detection fiber.
J Biomed Opt. 2020 May;25(5):1-10. doi: 10.1117/1.JBO.25.5.055003.

本文引用的文献

1
Fast diffuse correlation spectroscopy with a low-cost, fiber-less embedded diode laser.
Biomed Opt Express. 2021 Oct 4;12(11):6686-6700. doi: 10.1364/BOE.435136. eCollection 2021 Nov 1.
2
Towards rapid intraoperative axial localization of spinal cord ischemia with epidural diffuse correlation monitoring.
PLoS One. 2021 May 10;16(5):e0251271. doi: 10.1371/journal.pone.0251271. eCollection 2021.
4
Diffuse Correlation Spectroscopy Analysis Implemented on a Field Programmable Gate Array.
IEEE Access. 2019;7:122503-122512. doi: 10.1109/access.2019.2938085. Epub 2019 Aug 28.
5
Estimating intracranial pressure using pulsatile cerebral blood flow measured with diffuse correlation spectroscopy.
Biomed Opt Express. 2020 Feb 19;11(3):1462-1476. doi: 10.1364/BOE.386612. eCollection 2020 Mar 1.
6
Noninvasive optical measurement of microvascular cerebral hemodynamics and autoregulation in the neonatal ECMO patient.
Pediatr Res. 2020 Dec;88(6):925-933. doi: 10.1038/s41390-020-0841-6. Epub 2020 Mar 14.
7
Cerebral Blood Flow Response During Bolus Normal Saline Infusion After Ischemic Stroke.
J Stroke Cerebrovasc Dis. 2019 Nov;28(11):104294. doi: 10.1016/j.jstrokecerebrovasdis.2019.07.010. Epub 2019 Aug 13.
9
Dynamic autoregulation of cerebral blood flow measured non-invasively with fast diffuse correlation spectroscopy.
J Cereb Blood Flow Metab. 2018 Feb;38(2):230-240. doi: 10.1177/0271678X17747833. Epub 2017 Dec 12.
10
Combined multi-distance frequency domain and diffuse correlation spectroscopy system with simultaneous data acquisition and real-time analysis.
Biomed Opt Express. 2017 Aug 7;8(9):3993-4006. doi: 10.1364/BOE.8.003993. eCollection 2017 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验