Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.
VIB-KU Leuven Center for Microbiology, Leuven, Belgium.
Nat Commun. 2023 Jan 16;14(1):241. doi: 10.1038/s41467-023-35940-3.
Deep mutational scanning is a powerful approach to investigate a wide variety of research questions including protein function and stability. Here, we perform deep mutational scanning on three essential E. coli proteins (FabZ, LpxC and MurA) involved in cell envelope synthesis using high-throughput CRISPR genome editing, and study the effect of the mutations in their original genomic context. We use more than 17,000 variants of the proteins to interrogate protein function and the importance of individual amino acids in supporting viability. Additionally, we exploit these libraries to study resistance development against antimicrobial compounds that target the selected proteins. Among the three proteins studied, MurA seems to be the superior antimicrobial target due to its low mutational flexibility, which decreases the chance of acquiring resistance-conferring mutations that simultaneously preserve MurA function. Additionally, we rank anti-LpxC lead compounds for further development, guided by the number of resistance-conferring mutations against each compound. Our results show that deep mutational scanning studies can be used to guide drug development, which we hope will contribute towards the development of novel antimicrobial therapies.
深度突变扫描是一种强大的方法,可以研究各种研究问题,包括蛋白质功能和稳定性。在这里,我们使用高通量 CRISPR 基因组编辑对参与细胞包膜合成的三个必需的大肠杆菌蛋白(FabZ、LpxC 和 MurA)进行深度突变扫描,并研究突变在其原始基因组背景下的影响。我们使用超过 17000 种蛋白质变体来探究蛋白质功能以及单个氨基酸在支持生存能力方面的重要性。此外,我们还利用这些文库来研究针对选定蛋白质的抗菌化合物的耐药性发展。在所研究的三种蛋白质中,MurA 似乎是更好的抗菌靶标,因为它的突变灵活性较低,降低了同时获得赋予耐药性同时保留 MurA 功能的突变的机会。此外,我们根据每种化合物的耐药性赋予突变的数量,为进一步开发抗 LpxC 的先导化合物进行排名。我们的研究结果表明,深度突变扫描研究可用于指导药物开发,我们希望这将有助于开发新型抗菌疗法。