Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.
Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada.
Nat Microbiol. 2024 Nov;9(11):3025-3040. doi: 10.1038/s41564-024-01819-2. Epub 2024 Oct 8.
Azole antifungals are the main drugs used to treat fungal infections. Amino acid substitutions in the drug target Erg11 (Cyp51) are a common resistance mechanism in pathogenic yeasts. How many and which mutations confer resistance is, however, largely unknown. Here we measure the impact of nearly 4,000 amino acid variants of Candida albicans Erg11 on the susceptibility to six clinical azoles. This was achieved by deep mutational scanning of CaErg11 expressed in Saccharomyces cerevisiae. We find that a large fraction of mutations lead to resistance (33%), most resistance mutations confer cross-resistance (88%) and only a handful of resistance mutations show a significant fitness cost (9%). Our results reveal that resistance to azoles can arise through a large set of mutations and this will probably lead to azole pan-resistance, with little evolutionary compromise. This resource will help inform treatment choices in clinical settings and guide the development of new drugs.
唑类抗真菌药是治疗真菌感染的主要药物。药物靶点 Erg11(Cyp51)中的氨基酸取代是致病性酵母中常见的耐药机制。然而,有多少种以及哪种突变导致耐药性在很大程度上尚不清楚。在这里,我们测量了近 4000 种白色念珠菌 Erg11 的氨基酸变体对六种临床唑类药物的敏感性。这是通过在酿酒酵母中表达的 CaErg11 的深度突变扫描来实现的。我们发现,很大一部分突变导致耐药(33%),大多数耐药突变导致交叉耐药(88%),只有少数耐药突变显示出显著的适应性成本(9%)。我们的研究结果表明,唑类药物的耐药性可以通过一系列突变产生,这可能导致唑类药物的广泛耐药性,而进化上的妥协很小。这一资源将有助于为临床治疗提供指导,并指导新药的开发。