Suppr超能文献

使用深度学习神经网络在眼科、皮肤科和口腔医学中利用临床图像进行病变检测和自动分类——系统综述。

Use of Deep Neural Networks in the Detection and Automated Classification of Lesions Using Clinical Images in Ophthalmology, Dermatology, and Oral Medicine-A Systematic Review.

机构信息

Graduate Program in Dentistry, School of Dentistry, Federal University of Rio Grande Do Sul, Barcelos 2492/503, Bairro Santana, Porto Alegre, RS, CEP 90035-003, Brazil.

Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil.

出版信息

J Digit Imaging. 2023 Jun;36(3):1060-1070. doi: 10.1007/s10278-023-00775-3. Epub 2023 Jan 17.

Abstract

Artificial neural networks (ANN) are artificial intelligence (AI) techniques used in the automated recognition and classification of pathological changes from clinical images in areas such as ophthalmology, dermatology, and oral medicine. The combination of enterprise imaging and AI is gaining notoriety for its potential benefits in healthcare areas such as cardiology, dermatology, ophthalmology, pathology, physiatry, radiation oncology, radiology, and endoscopic. The present study aimed to analyze, through a systematic literature review, the application of performance of ANN and deep learning in the recognition and automated classification of lesions from clinical images, when comparing to the human performance. The PRISMA 2020 approach (Preferred Reporting Items for Systematic Reviews and Meta-analyses) was used by searching four databases of studies that reference the use of IA to define the diagnosis of lesions in ophthalmology, dermatology, and oral medicine areas. A quantitative and qualitative analyses of the articles that met the inclusion criteria were performed. The search yielded the inclusion of 60 studies. It was found that the interest in the topic has increased, especially in the last 3 years. We observed that the performance of IA models is promising, with high accuracy, sensitivity, and specificity, most of them had outcomes equivalent to human comparators. The reproducibility of the performance of models in real-life practice has been reported as a critical point. Study designs and results have been progressively improved. IA resources have the potential to contribute to several areas of health. In the coming years, it is likely to be incorporated into everyday life, contributing to the precision and reducing the time required by the diagnostic process.

摘要

人工神经网络(ANN)是一种人工智能(AI)技术,用于在眼科、皮肤科和口腔医学等领域自动识别和分类临床图像中的病理变化。企业成像和 AI 的结合在心脏病学、皮肤科、眼科、病理学、物理治疗学、放射肿瘤学、放射学和内窥镜等医疗保健领域的潜在益处引起了关注。本研究旨在通过系统文献回顾分析 ANN 和深度学习在识别和自动分类临床图像中的病变方面的性能,同时与人类表现进行比较。使用 PRISMA 2020 方法(系统评价和荟萃分析的首选报告项目),通过搜索四个引用人工智能用于定义眼科、皮肤科和口腔医学领域病变诊断的研究数据库,对参考研究进行了搜索。对符合纳入标准的文章进行了定量和定性分析。搜索结果纳入了 60 项研究。结果发现,人们对该主题的兴趣有所增加,尤其是在过去 3 年。我们观察到,IA 模型的性能很有前景,具有很高的准确性、灵敏度和特异性,其中大多数结果与人类可比者相当。模型在实际实践中的性能的可重复性已被报道为一个关键点。研究设计和结果都在逐步改进。IA 资源有可能对多个健康领域做出贡献。在未来几年,它可能会融入日常生活,有助于提高诊断过程的精度和缩短所需时间。

相似文献

7

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验