Suppr超能文献

面向恶劣环境耐摩尔斯场效应晶体管的全转移电极界面工程。

All-Transfer Electrode Interface Engineering Toward Harsh-Environment-Resistant MoS Field-Effect Transistors.

机构信息

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China.

出版信息

Adv Mater. 2023 May;35(18):e2210735. doi: 10.1002/adma.202210735. Epub 2023 Feb 17.

Abstract

Nanoscale electronic devices that can work in harsh environments are in high demand for wearable, automotive, and aerospace electronics. Clean and defect-free interfaces are of vital importance for building nanoscale harsh-environment-resistant devices. However, current nanoscale devices are subject to failure in these environments, especially at defective electrode-channel interfaces. Here, harsh-environment-resistant MoS transistors are developed by engineering electrode-channel interfaces with an all-transfer of van der Waals electrodes. The delivered defect-free, graphene-buffered electrodes keep the electrode-channel interfaces intact and robust. As a result, the as-fabricated MoS devices have reduced Schottky barrier heights, leading to a very large on-state current and high carrier mobility. More importantly, the defect-free, hydrophobic graphene buffer layer prevents metal diffusion from the electrodes to MoS and the intercalation of water molecules at the electrode-MoS interfaces. This enables high resistances of MoS devices with all-transfer electrodes to various harsh environments, including humid, oxidizing, and high-temperature environments, surpassing the devices with other kinds of electrodes. The work deepens the understanding of the roles of electrode-channel interfaces in nanoscale devices and provides a promising interface engineering strategy to build nanoscale harsh-environment-resistant devices.

摘要

在可穿戴、汽车和航空航天电子领域,能够在恶劣环境中工作的纳米电子器件的需求很高。对于构建纳米级抗恶劣环境器件,清洁且无缺陷的界面至关重要。然而,目前的纳米器件在这些环境中容易失效,尤其是在有缺陷的电极-通道界面处。在这里,通过使用范德华电极的全转移工程电极-通道界面,开发出了抗恶劣环境的 MoS 晶体管。所提供的无缺陷、石墨烯缓冲电极保持了电极-通道界面的完整和稳定。结果,所制造的 MoS 器件的肖特基势垒高度降低,从而导致非常大的导通电流和高载流子迁移率。更重要的是,无缺陷的疏水性石墨烯缓冲层可以防止来自电极的金属扩散到 MoS 中,以及水分子在电极-MoS 界面处的嵌入。这使得具有全转移电极的 MoS 器件能够在各种恶劣环境(包括潮湿、氧化和高温环境)中具有高电阻,超过了具有其他类型电极的器件。这项工作加深了对电极-通道界面在纳米器件中的作用的理解,并提供了一种有前途的界面工程策略,以构建纳米级抗恶劣环境器件。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验