Suppr超能文献

通过使用改进的基于聚类的黄金分割优化器优化深度残差特征来检测COVID-19

COVID-19 Detection by Optimizing Deep Residual Features with Improved Clustering-Based Golden Ratio Optimizer.

作者信息

Chattopadhyay Soham, Dey Arijit, Singh Pawan Kumar, Geem Zong Woo, Sarkar Ram

机构信息

Department of Electrical Engineering, Jadavpur University, Kolkata 700032, India.

Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, Simhat, Haringhata, Nadia 741249, India.

出版信息

Diagnostics (Basel). 2021 Feb 15;11(2):315. doi: 10.3390/diagnostics11020315.

Abstract

The COVID-19 virus is spreading across the world very rapidly. The World Health Organization (WHO) declared it a global pandemic on 11 March 2020. Early detection of this virus is necessary because of the unavailability of any specific drug. The researchers have developed different techniques for COVID-19 detection, but only a few of them have achieved satisfactory results. There are three ways for COVID-19 detection to date, those are real-time reverse transcription-polymerize chain reaction (RT-PCR), Computed Tomography (CT), and X-ray plays. In this work, we have proposed a less expensive computational model for automatic COVID-19 detection from Chest X-ray and CT-scan images. Our paper has a two-fold contribution. Initially, we have extracted deep features from the image dataset and then introduced a completely novel meta-heuristic feature selection approach, named Clustering-based Golden Ratio Optimizer (CGRO). The model has been implemented on three publicly available datasets, namely the COVID CT-dataset, SARS-Cov-2 dataset, and Chest X-Ray dataset, and attained state-of-the-art accuracies of 99.31%, 98.65%, and 99.44%, respectively.

摘要

新型冠状病毒肺炎病毒正在全球迅速传播。世界卫生组织(WHO)于2020年3月11日宣布其为全球大流行病。由于没有任何特效药物,早期检测这种病毒很有必要。研究人员已经开发出了不同的新型冠状病毒肺炎检测技术,但只有少数技术取得了令人满意的结果。迄今为止,新型冠状病毒肺炎检测有三种方法,即实时逆转录聚合酶链反应(RT-PCR)、计算机断层扫描(CT)和X射线检测。在这项工作中,我们提出了一种成本较低的计算模型,用于从胸部X光和CT扫描图像中自动检测新型冠状病毒肺炎。我们的论文有两方面的贡献。首先,我们从图像数据集中提取了深度特征,然后引入了一种全新的元启发式特征选择方法,名为基于聚类的黄金分割优化器(CGRO)。该模型已在三个公开可用的数据集上实现,即新型冠状病毒肺炎CT数据集、严重急性呼吸综合征冠状病毒2(SARS-Cov-2)数据集和胸部X光数据集,分别达到了99.31%、98.65%和99.44%的先进准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50aa/7919377/fab9a338fd0e/diagnostics-11-00315-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验